CFTR Inhibitors Display Antiviral Activity against Herpes Simplex Virus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101509722 Publication Model: Electronic Cited Medium: Internet ISSN: 1999-4915 (Electronic) Linking ISSN: 19994915 NLM ISO Abbreviation: Viruses Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI
    • Subject Terms:
    • Abstract:
      The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent Cl - channel, is closely associated with multiple pathogen infections, such as SARS-CoV-2. However, whether the function of the CFTR is involved in herpes simplex virus (HSV) infection has not been reported. To evaluate the association of CFTR activity with HSV infection, the antiviral effect of CFTR inhibitors in epithelial cells and HSV-infected mice was tested in this study. The data showed that treatment with CFTR inhibitors in different concentrations, Glyh-101 (5-20 μM), CFTRi-172 (5-20 μM) and IOWH-032 (5-20 μM), or the gene silence of the CFTR could suppress herpes simplex virus 1 (HSV-1) and herpes simplex virus 2 (HSV-2) replication in human HaCaT keratinocytes cells, and that a CFTR inhibitor, Glyh-101 (10-20 μM), protected mice from HSV-1 and HSV-2 infection. Intracellular Cl - concentration ([Cl - ] i ) was decreased after HSV infection via the activation of adenylyl cyclase (AC)-cAMP signaling pathways. CFTR inhibitors (20 μM) increased the reduced [Cl - ] i caused by HSV infection in host epithelial cells. Additionally, CFTR inhibitors reduced the activity and phosphorylation of SGK1 in infected cells and tissues (from the eye and vagina). Our study found that CFTR inhibitors can effectively suppress HSV-1 and HSV-2 infection, revealing a previously unknown role of CFTR inhibitors in HSV infection and suggesting new perspectives on the mechanisms governing HSV infection in host epithelial cells, as well as leading to potential novel treatments.
    • References:
      Eur J Pharmacol. 2021 Feb 5;892:173782. (PMID: 33279521)
      Arch Dis Child. 2021 Oct;106(10):941-945. (PMID: 33785533)
      Adv Sci (Weinh). 2022 Dec;9(34):e2202857. (PMID: 36261399)
      Eur Respir J. 2023 Apr 1;61(4):. (PMID: 37003609)
      Sci Adv. 2020 Mar 18;6(12):eaaz3367. (PMID: 32206724)
      Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2584-92. (PMID: 25064591)
      Mucosal Immunol. 2018 Jul;11(4):1149-1157. (PMID: 29545647)
      Curr Eye Res. 2009 Mar;34(3):171-6. (PMID: 19274523)
      Int Immunopharmacol. 2019 Mar;68:58-67. (PMID: 30612085)
      Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4435-40. (PMID: 25831498)
      Purinergic Signal. 2021 Sep;17(3):399-410. (PMID: 33970408)
      J Virol. 2014 Sep 1;88(17):10026-38. (PMID: 24942591)
      J Nat Med. 2016 Apr;70(2):217-24. (PMID: 26763002)
      Contact (Thousand Oaks). 2021 Apr 25;4:25152564211008341. (PMID: 37366374)
      Antiviral Res. 2020 Jun;178:104778. (PMID: 32229236)
      J Ethnopharmacol. 2012 May 7;141(1):368-76. (PMID: 22414475)
      Annu Rev Pharmacol Toxicol. 2001;41:145-74. (PMID: 11264454)
      Virus Res. 2016 Aug 15;222:106-112. (PMID: 27297663)
      J Virol. 2020 Jan 17;94(3):. (PMID: 31694955)
      Cell Physiol Biochem. 2002;12(2-3):135-42. (PMID: 12077559)
      Nat Commun. 2023 Jan 10;14(1):132. (PMID: 36627352)
      Cell Physiol Biochem. 2001;11(4):209-18. (PMID: 11509829)
      Cell Signal. 2018 Jun;46:135-144. (PMID: 29563061)
      J Biol Chem. 2013 Nov 15;288(46):33283-91. (PMID: 24100033)
      Cell Physiol Biochem. 2008;22(1-4):69-78. (PMID: 18769033)
      Pathol Res Pract. 2000;196(9):635-45. (PMID: 10997739)
      Mol Med. 2015 Jan 12;21:134-42. (PMID: 25587856)
      JCI Insight. 2018 Oct 18;3(20):. (PMID: 30333319)
      Physiol Rev. 2006 Oct;86(4):1151-78. (PMID: 17015487)
      Nat Protoc. 2008;3(6):1101-8. (PMID: 18546601)
      FASEB J. 2013 Jul;27(7):2584-99. (PMID: 23507869)
      Am J Physiol Gastrointest Liver Physiol. 2020 Aug 1;319(2):G121-G132. (PMID: 32567324)
      Immunity. 2020 May 19;52(5):767-781.e6. (PMID: 32277911)
      Cells. 2022 Apr 15;11(8):. (PMID: 35456026)
      PLoS Negl Trop Dis. 2021 Nov 18;15(11):e0009969. (PMID: 34793441)
      Cells. 2023 Feb 28;12(5):. (PMID: 36899912)
      Mol Pharmacol. 2012 Dec;82(6):1042-55. (PMID: 22923500)
      Bull World Health Organ. 2020 May 01;98(5):315-329. (PMID: 32514197)
      Biochem Biophys Res Commun. 2014 Apr 18;446(4):990-6. (PMID: 24657267)
      Science. 2013 Feb 15;339(6121):826-30. (PMID: 23258412)
      Biochem Pharmacol. 2020 Jan;171:113691. (PMID: 31704236)
      Curr Med Chem. 2020;27(24):4118-4137. (PMID: 29521211)
      Antiviral Res. 2020 Apr;176:104721. (PMID: 32044154)
      Brain Imaging Behav. 2019 Apr;13(2):396-407. (PMID: 29594872)
      Biomed Pharmacother. 2021 Oct;142:112090. (PMID: 34463266)
      J Leukoc Biol. 2015 Aug;98(2):163-72. (PMID: 26048979)
      Handb Exp Pharmacol. 2024;283:181-218. (PMID: 37468723)
    • Contributed Indexing:
      Keywords: CFTRi-172; Glyh-101; IOWH-032; cystic fibrosis transmembrane conductance regulator (CFTR); herpes simplex virus (HSV)
    • Accession Number:
      0 (Antiviral Agents)
      126880-72-6 (Cystic Fibrosis Transmembrane Conductance Regulator)
    • Publication Date:
      Date Created: 20240829 Date Completed: 20240829 Latest Revision: 20240906
    • Publication Date:
      20240906
    • Accession Number:
      PMC11360776
    • Accession Number:
      10.3390/v16081308
    • Accession Number:
      39205282