DNA-Engineered Degradable Invisibility Cloaking for Tumor-Targeting Nanoparticles.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 7503056 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5126 (Electronic) Linking ISSN: 00027863 NLM ISO Abbreviation: J Am Chem Soc Subsets: MEDLINE
    • Publication Information:
      Publication: Washington, DC : American Chemical Society
      Original Publication: Easton, Pa. [etc.]
    • Subject Terms:
    • Abstract:
      Nanoparticle (NP) delivery systems have been actively exploited for cancer therapy and vaccine development. Nevertheless, the major obstacle to targeted delivery lies in the substantial liver sequestration of NPs. Here we report a DNA-engineered approach to circumvent liver phagocytosis for enhanced tumor-targeted delivery of nanoagents in vivo. We find that a monolayer of DNA molecules on the NP can preferentially adsorb a dysopsonin protein in the serum to induce functionally invisibility to livers; whereas the tumor-specific uptake is triggered by the subsequent degradation of the DNA shell in vivo. The degradation rate of DNA shells is readily tunable by the length of coated DNA molecules. This DNA-engineered invisibility cloaking (DEIC) is potentially generic as manifested in both Ag 2 S quantum dot- and nanoliposome-based tumor-targeted delivery in mice. Near-infrared-II imaging reveals a high tumor-to-liver ratio of up to ∼5.1, approximately 18-fold higher than those with conventional nanomaterials. This approach may provide a universal strategy for high-efficiency targeted delivery of theranostic agents in vivo.
    • Accession Number:
      9007-49-2 (DNA)
    • Publication Date:
      Date Created: 20240828 Date Completed: 20240911 Latest Revision: 20240911
    • Publication Date:
      20240911
    • Accession Number:
      10.1021/jacs.4c09479
    • Accession Number:
      39196310