Role of Kindlin 2 in prostate cancer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.
      (© 2024. The Author(s).)
    • References:
      Desai, K., McManus, J. M. & Sharifi, N. Hormonal Therapy for Prostate Cancer. Endocr. Rev. 42, 354–373. https://doi.org/10.1210/endrev/bnab002 (2021). (PMID: 10.1210/endrev/bnab002334809838152444)
      Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30. https://doi.org/10.3322/caac.21332 (2016). (PMID: 10.3322/caac.2133226742998)
      Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899. https://doi.org/10.1126/science.1163865 (2009). (PMID: 10.1126/science.116386519443776)
      Meller, J. et al. Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness. Mol. Biol. Cell 26, 786–796. https://doi.org/10.1091/mbc.E14-08-1294 (2015). (PMID: 10.1091/mbc.E14-08-1294255404294325847)
      Plow, E. F. & Qin, J. The Kindlin family of adapter proteins. Circ. Res. 124, 202–204. https://doi.org/10.1161/CIRCRESAHA.118.314362 (2019). (PMID: 10.1161/CIRCRESAHA.118.314362306534436400466)
      Karakose, E., Schiller, H. B. & Fassler, R. The kindlins at a glance. J. Cell Sci. 123, 2353–2356. https://doi.org/10.1242/jcs.064600 (2010). (PMID: 10.1242/jcs.06460020592181)
      Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008). (PMID: 10.1101/gad.469408184832182377186)
      Dowling, J. J. et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ. Res. 102, 423–431. https://doi.org/10.1161/CIRCRESAHA.107.161489 (2008). (PMID: 10.1161/CIRCRESAHA.107.16148918174465)
      Zhang, Z. et al. Postnatal Loss of Kindlin-2 Leads to Progressive Heart Failure. Circ. Heart Fail. 9, e003129. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003129 (2016). (PMID: 10.1161/CIRCHEARTFAILURE.116.00312927502369)
      Zhang, Z. et al. Kindlin-2 is essential for preserving integrity of the developing heart and preventing ventricular rupture. Circulation 139, 1554–1556. https://doi.org/10.1161/CIRCULATIONAHA.118.038383 (2019). (PMID: 10.1161/CIRCULATIONAHA.118.038383308832266424132)
      Wei, C. Y. et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY) 11, 6273–6285. https://doi.org/10.18632/aging.102187 (2019). (PMID: 10.18632/aging.10218731427543)
      Plow, E. F., Das, M., Bialkowska, K. & Sossey-Alaoui, K. Of kindlins and cancer. Discoveries (Craiova) 20, 30. https://doi.org/10.15190/d.2016.6 (2016). (PMID: 10.15190/d.2016.6)
      Wang, W., Kansakar, U., Markovic, V. & Sossey-Alaoui, K. Role of Kindlin-2 in cancer progression and metastasis. Ann. Transl. Med. 8, 901. https://doi.org/10.21037/atm.2020.03.64 (2020). (PMID: 10.21037/atm.2020.03.64327937457396786)
      Nanni, S. et al. Epithelial-restricted gene profile of primary cultures from human prostate tumors: A molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4, 79–92. https://doi.org/10.1158/1541-7786.MCR-05-0098 (2006). (PMID: 10.1158/1541-7786.MCR-05-009816513839)
      Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): A co-activator of beta3 integrins. J. Cell Biol. 181, 439–446 (2008). (PMID: 10.1083/jcb.200710196184581552364684)
      Shi, X. et al. The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility. J. Biol. Chem. 282, 20455–20466 (2007). (PMID: 10.1074/jbc.M61168020017513299)
      Pluskota, E. et al. Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood 122, 2491–2499. https://doi.org/10.1182/blood-2013-04-497669 (2013). (PMID: 10.1182/blood-2013-04-497669238964093790514)
      Lu, F. et al. Mechanism of integrin activation by talin and its cooperation with kindlin. Nat. Commun. 13, 2362. https://doi.org/10.1038/s41467-022-30117-w (2022). (PMID: 10.1038/s41467-022-30117-w354880059054839)
      Varner, J. A. & Cheresh, D. A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730 (1996). (PMID: 10.1016/S0955-0674(96)80115-38939661)
      Weis, S. M. & Cheresh, D. A. alphaV integrins in angiogenesis and cancer. Cold Spring Harb. Perspect. Med. 1, a006478. https://doi.org/10.1101/cshperspect.a006478 (2011). (PMID: 10.1101/cshperspect.a006478222291193234453)
      Hamidi, H. & Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548. https://doi.org/10.1038/s41568-018-0038-z (2018). (PMID: 10.1038/s41568-018-0038-z300024796629548)
      Augoff, K. et al. miR-31 is a broad regulator of beta1-integrin expression and function in cancer cells. Mol. Cancer Res. 9, 1500–1508. https://doi.org/10.1158/1541-7786.MCR-11-0311 (2011). (PMID: 10.1158/1541-7786.MCR-11-0311218759323219821)
      Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70. https://doi.org/10.1016/s0092-8674(00)81683-9 (2000). (PMID: 10.1016/s0092-8674(00)81683-910647931)
      Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 12, 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 (2022). (PMID: 10.1158/2159-8290.CD-21-105935022204)
      Sossey-Alaoui, K. & Plow, E. F. miR-138-mediated regulation of KINDLIN-2 expression modulates sensitivity to chemotherapeutics. Mol. Cancer Res. 14, 228–238. https://doi.org/10.1158/1541-7786.MCR-15-0299 (2016). (PMID: 10.1158/1541-7786.MCR-15-029926474967)
      Giatromanolaki, A. et al. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res. 61, 7992–7998 (2001). (PMID: 11691824)
      Sossey-Alaoui, K. et al. Kindlin-2 regulates the growth of breast cancer tumors by activating CSF-1-mediated macrophage infiltration. Cancer Res. 77, 5129–5141. https://doi.org/10.1158/0008-5472.CAN-16-2337 (2017). (PMID: 10.1158/0008-5472.CAN-16-2337286876205600848)
      Renshaw, M. W., Price, L. S. & Schwartz, M. A. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J. Cell Biol. 147, 611–618 (1999). (PMID: 10.1083/jcb.147.3.611105455042151196)
      Desiniotis, A. & Kyprianou, N. Significance of talin in cancer progression and metastasis. Int. Rev. Cell Mol. Biol. 289, 117–147. https://doi.org/10.1016/B978-0-12-386039-2.00004-3 (2011). (PMID: 10.1016/B978-0-12-386039-2.00004-3217499005458740)
      Macke, A. J. et al. Targeting the ATF6-mediated ER stress response and autophagy blocks integrin-driven prostate cancer progression. Mol. Cancer Res. 21, 958–974. https://doi.org/10.1158/1541-7786.MCR-23-0108 (2023). (PMID: 10.1158/1541-7786.MCR-23-01083731474910527559)
      Sossey-Alaoui, K., Pluskota, E., Szpak, D., Schiemann, W. P. & Plow, E. F. The Kindlin-2 regulation of epithelial-to-mesenchymal transition in breast cancer metastasis is mediated through miR-200b. Sci. Rep. 8, 7360. https://doi.org/10.1038/s41598-018-25373-0 (2018). (PMID: 10.1038/s41598-018-25373-0297434935943603)
      Pluskota, E. et al. The integrin coactivator kindlin-2 plays a critical role in angiogenesis in mice and zebrafish. Blood 117, 4978–4987. https://doi.org/10.1182/blood-2010-11-321182 (2011). (PMID: 10.1182/blood-2010-11-321182213782733100704)
      Pluskota, E. et al. Kindlin-2 interacts with endothelial adherens junctions to support vascular barrier integrity. J. Physiol.-Lond. 595, 6443–6462. https://doi.org/10.1113/Jp274380 (2017). (PMID: 10.1113/Jp274380287996535638888)
      Sossey-Alaoui, K., Pluskota, E., Szpak, D. & Plow, E. F. The Kindlin2-p53-SerpinB2 signaling axis is required for cellular senescence in breast cancer. Cell Death Dis. 10, 539. https://doi.org/10.1038/s41419-019-1774-z (2019). (PMID: 10.1038/s41419-019-1774-z313083596629707)
      Rana, P. S. et al. The WAVE2/miR-29/integrin-beta1 oncogenic signaling axis promotes tumor growth and metastasis in triple-negative breast cancer. Cancer Res. Commun. 3, 160–174. https://doi.org/10.1158/2767-9764.CRC-22-0249 (2023). (PMID: 10.1158/2767-9764.CRC-22-02493696823110035451)
    • Grant Information:
      P30 CA010815 United States CA NCI NIH HHS; R35 CA220446 United States CA NCI NIH HHS
    • Contributed Indexing:
      Keywords: Androgen dependence; Integrins; Kindlin-2; Prostate cancer; Tumor angiogenesis; Tumor progression
    • Accession Number:
      0 (Neoplasm Proteins)
      0 (Membrane Proteins)
      0 (FERMT2 protein, human)
      0 (Integrins)
    • Publication Date:
      Date Created: 20240827 Date Completed: 20240827 Latest Revision: 20241210
    • Publication Date:
      20241210
    • Accession Number:
      PMC11349918
    • Accession Number:
      10.1038/s41598-024-70202-2
    • Accession Number:
      39191802