Genome-wide analysis of Brucella melitensis growth in spleen of infected mice allows rational selection of new vaccine candidates.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, c2005-
    • Subject Terms:
    • Abstract:
      Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Barbieux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Lancet. 1993 Sep 25;342(8874):805. (PMID: 8103891)
      Lancet Infect Dis. 2006 Feb;6(2):91-9. (PMID: 16439329)
      Front Microbiol. 2019 Feb 14;10:250. (PMID: 30837973)
      Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26374-26381. (PMID: 33020286)
      BMC Vet Res. 2023 Oct 18;19(1):211. (PMID: 37853407)
      PLoS One. 2015 Sep 16;10(9):e0137835. (PMID: 26376185)
      Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
      Cell Microbiol. 2005 Aug;7(8):1151-61. (PMID: 16008582)
      Eur J Immunol. 2010 Dec;40(12):3458-71. (PMID: 21108467)
      Infect Immun. 2005 Sep;73(9):6048-54. (PMID: 16113325)
      J Immunol. 2007 Apr 15;178(8):5182-91. (PMID: 17404301)
      Crit Rev Microbiol. 2016 Aug;42(4):507-25. (PMID: 25471320)
      Biochemistry. 2004 Aug 17;43(32):10343-52. (PMID: 15301532)
      BMC Microbiol. 2006 Dec 18;6:102. (PMID: 17176467)
      PLoS One. 2008 Jul 23;3(7):e2760. (PMID: 18648644)
      Vet Res. 2015 Jul 08;46:76. (PMID: 26155935)
      Antimicrob Agents Chemother. 2015 Nov;59(11):6717-24. (PMID: 26282427)
      J Immunol. 2016 May 1;196(9):3780-93. (PMID: 27036913)
      Appl Microbiol Biotechnol. 2016 Jan;100(1):31-43. (PMID: 26476650)
      PLoS Negl Trop Dis. 2024 Jan 8;18(1):e0011889. (PMID: 38190394)
      J Lipid Res. 2005 Nov;46(11):2448-57. (PMID: 16150824)
      Biochem Soc Trans. 2020 Oct 30;48(5):2029-2037. (PMID: 32915193)
      Anim Nutr. 2015 Sep;1(3):119-122. (PMID: 29767158)
      Gene. 2015 Jan 25;555(2):269-76. (PMID: 25447907)
      Future Microbiol. 2012 Jan;7(1):47-58. (PMID: 22191446)
      Vet Microbiol. 2002 Dec 20;90(1-4):497-519. (PMID: 12414167)
      Infect Immun. 2006 Jul;74(7):3874-9. (PMID: 16790759)
      PLoS Pathog. 2012;8(3):e1002575. (PMID: 22479178)
      Biotechniques. 1999 Apr;26(4):620-2. (PMID: 10343896)
      Trop Anim Health Prod. 1987 May;19(2):65-74. (PMID: 3307078)
      Nat Commun. 2014 Jul 09;5:4366. (PMID: 25006695)
      J Mol Biol. 1980 Apr;138(2):179-207. (PMID: 6997493)
      Infect Immun. 1998 Mar;66(3):1008-16. (PMID: 9488389)
      J Bacteriol. 1957 Feb;73(2):211-7. (PMID: 13416171)
      Infect Immun. 2014 Sep;82(9):3927-38. (PMID: 25001604)
      Mol Microbiol. 2015 Oct;98(2):318-28. (PMID: 26175079)
      Plasmid. 1993 Mar;29(2):142-6. (PMID: 8469720)
      J Bacteriol. 2010 Jul;192(13):3434-40. (PMID: 20400542)
      Appl Environ Microbiol. 2015 Jan;81(2):578-86. (PMID: 25381237)
      Infect Immun. 2012 Dec;80(12):4271-80. (PMID: 23006848)
      Mol Microbiol. 2000 Nov;38(3):543-51. (PMID: 11069678)
      J Bacteriol. 2014 Aug 15;196(16):3045-57. (PMID: 24936050)
      Infect Immun. 1995 Aug;63(8):3054-61. (PMID: 7622230)
      J Bacteriol. 1980 Aug;143(2):720-5. (PMID: 7009561)
      Infect Immun. 2021 Sep 16;89(10):e0015621. (PMID: 34125603)
      Microb Biotechnol. 2008 Sep;1(5):345-60. (PMID: 21261855)
      Vet Microbiol. 1999 Aug 31;68(3-4):235-44. (PMID: 10510042)
      J Leukoc Biol. 2019 Jul;106(1):27-34. (PMID: 30748031)
      J Bacteriol. 1993 May;175(10):2970-9. (PMID: 8098327)
      J Bacteriol. 1986 Jul;167(1):66-72. (PMID: 3013840)
      Infect Immun. 2011 Oct;79(10):4165-74. (PMID: 21768283)
      PLoS Pathog. 2022 Jun 30;18(6):e1010621. (PMID: 35771771)
      J Appl Microbiol. 2013 Jan;114(1):11-24. (PMID: 22924898)
      Emerg Infect Dis. 2023 Sep;29(9):1789-1797. (PMID: 37610167)
      Sci Rep. 2017 Aug 25;7(1):9430. (PMID: 28842600)
      Infect Immun. 2000 Jul;68(7):4102-7. (PMID: 10858227)
      Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15711-6. (PMID: 12438693)
      Nat Biotechnol. 2004 Dec;22(12):1567-72. (PMID: 15558047)
      Infect Immun. 2004 Aug;72(8):4911-7. (PMID: 15271960)
      Nat Rev Microbiol. 2013 Jul;11(7):435-42. (PMID: 23712350)
      Front Immunol. 2019 Jul 11;10:1589. (PMID: 31354728)
      Vet Microbiol. 2002 Dec 20;90(1-4):479-96. (PMID: 12414166)
      Prev Vet Med. 1997 Aug;31(3-4):275-83. (PMID: 9234451)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Vet Res. 2012 Apr 13;43:29. (PMID: 22500859)
      Vet Clin North Am Food Anim Pract. 2011 Mar;27(1):95-104. (PMID: 21215893)
      Rev Sci Tech. 2013 Apr;32(1):249-61. (PMID: 23837382)
      Crit Rev Microbiol. 2018 Mar;44(2):182-211. (PMID: 28604247)
      PLoS One. 2017 Oct 13;12(10):e0185823. (PMID: 29028813)
      Emerg Infect Dis. 2017 Feb;23(2):184-194. (PMID: 28098531)
      Vaccine. 2009 Nov 5;27 Suppl 4:D40-3. (PMID: 19837284)
      Annu Rev Microbiol. 2011;65:523-41. (PMID: 21939378)
      Infect Immun. 2018 Jul 23;86(8):. (PMID: 29844240)
      Infect Immun. 2003 Jul;71(7):3927-36. (PMID: 12819079)
      Immunol Rev. 2011 Mar;240(1):211-34. (PMID: 21349096)
      Front Microbiol. 2018 Apr 05;9:641. (PMID: 29675004)
    • Accession Number:
      0 (Brucella Vaccine)
      0 (Vaccines, Attenuated)
    • Publication Date:
      Date Created: 20240826 Date Completed: 20240826 Latest Revision: 20240828
    • Publication Date:
      20240828
    • Accession Number:
      PMC11346958
    • Accession Number:
      10.1371/journal.ppat.1012459
    • Accession Number:
      39186777