Evaluation of pharmacokinetic target attainment and hematological toxicity of linezolid in pediatric patients.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 1256165 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1041 (Electronic) Linking ISSN: 00316970 NLM ISO Abbreviation: Eur J Clin Pharmacol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer.
    • Subject Terms:
    • Abstract:
      Background: Linezolid is commonly used to treat severe and/or resistant Gram-positive infections. Few studies have assessed its pharmacokinetic (PK) target attainment in pediatrics.
      Objective: To evaluate the percentage of pediatrics achieving the PK targets of linezolid with standard dosing regimens and to assess the incidence and risk factors associated with its hematologic toxicity.
      Methods: This prospective observational study included pediatric patients aged 0-14 who received linezolid for suspected or proven Gram-positive infections. Linezolid trough concentrations and the 24-h area under the curve (AUC 24 ) were estimated, and hematologic toxicity was assessed.
      Results: Seventeen pediatric patients (5 neonates and 12 older pediatrics) were included. A wide variability was observed in linezolid's trough and AUC 24 (ranging from 0.5 to 14.4 mg/L and from 86 to 700 mg.h/L, respectively). The median AUC 24 was significantly higher in neonates than older pediatrics (436 [350-574] vs. 200 [134-272] mg,h/L, P = 0.01). Out of all patients, only 41% achieved adequate drug exposure (AUC 24 160-300 mg.h/L and trough 2-7 mg/L), with 24% having subtherapeutic, and 35% having higher-than-optimal exposures. Hematological toxicity was observed in 53% of cases. Identified risk factors include treatment duration over 7 days, baseline platelet counts below 150 × 10 9 /L, sepsis/septic shock, and concomitant use of meropenem.
      Conclusions: Linezolid's standard dosing failed to achieve its PK targets in approximately half of our pediatric cohort. Our findings highlight the complex interplay between the risk factors of linezolid-associated hematological toxicity and underscore the importance of its vigilant use and monitoring, particularly in pediatrics with concomitant multiple risk factors.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Vinh DC, Rubinstein E (2009) Linezolid: a review of safety and tolerability. J Infect 59(Suppl 1):S59-74. (PMID: 1976689110.1016/S0163-4453(09)60009-8)
      Dresser LD, Rybak MJ (1998) The pharmacologic and bacteriologic properties of oxazolidinones, a new class of synthetic antimicrobials. Pharmacotherapy 18(3):456–462. (PMID: 962009710.1002/j.1875-9114.1998.tb03109.x)
      Stalker DJ, Jungbluth GL (2003) Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129–1140. (PMID: 1453172410.2165/00003088-200342130-00004)
      World Health Organization (2022) Antimicrobial resistance. Global antimicrobial resistance and use surveillance system (GLASS) report. WHO. Available from: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance . Accessed 17 Mar 2024.
      Almutairi H, Albahadel H, Alhifany A et al (2024) Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) at a maternity and children hospital in Saudi Arabia: A cross-sectional study. Saudi Pharm J 32(4):102001. (PMID: 384399501090978210.1016/j.jsps.2024.102001)
      Banawas SS, Alobaidi AS, Dawoud TM et al (2023) Prevalence of multidrug-resistant bacteria in healthcare-associated bloodstream infections at hospitals in Riyadh, Saudi Arabia. Pathogens 12(9):1075. (PMID: 377648831053660010.3390/pathogens12091075)
      Fang P, Gao K, Yang J et al (2023) Prevalence of multidrug-resistant pathogens causing neonatal early and late onset sepsis, a retrospective study from the tertiary referral children’s hospital. Infect Drug Resist 16:4213–4225. (PMID: 374042531031752610.2147/IDR.S416020)
      Mariani M, Parodi A, Minghetti D et al (2022) Early and late onset neonatal sepsis: epidemiology and effectiveness of empirical antibacterial therapy in a III level neonatal intensive care unit. Antibiotics (Basel) 11(2):284. (PMID: 3520388610.3390/antibiotics11020284)
      Shariati A, Dadashi M, Moghadam MT et al (2020) Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep 10(1):12689. (PMID: 32728110739178210.1038/s41598-020-69058-z)
      Belete MA, Gedefie A, Alemayehu E et al (2023) The prevalence of vancomycin-resistant Staphylococcus aureus in Ethiopia: a systematic review and meta-analysis. Antimicrob Resist Infect Control 12(1):86. (PMID: 376490601046887010.1186/s13756-023-01291-3)
      Bandín-Vilar E, García-Quintanilla L, Castro-Balado A et al (2022) Review of population pharmacokinetic analyses of linezolid. Clin Pharmacokinet 61(6):789–817. (PMID: 35699914919292910.1007/s40262-022-01125-2)
      Linezolid. In: Lexicomp Online (2023) Pediatric & Neonatal Lexi-Drugs. Hudson, OH: Lexi-Comp, Inc. Available from: www.online.lexi.com . Accessed 15 Jan 2023.
      Matrat L, Plaisant F, Barreto C et al (2020) Increasing use of linezolid in a tertiary NICU during a 10-year period: reasons and concerns for the future. Antimicrob Resist Infect Control 9(1):156. (PMID: 32967720751329810.1186/s13756-020-00818-2)
      Buccellato E, Melis M, Biagi C et al (2015) Use of antibiotics in pediatrics: 8-year survey in Italian hospitals. PLoS ONE 10:e0139097. (PMID: 26405817458400410.1371/journal.pone.0139097)
      Bagga B, Buckingham S, Arnold S et al (2018) Increasing linezolid-resistant enterococcus in a children’s hospital. Pediatr Infect Dis J 37:242–244. (PMID: 2918967510.1097/INF.0000000000001769)
      Hallam MJ, Allen JM, James SE et al (2010) Potential subtherapeutic linezolid and meropenem antibiotic concentrations in a patient with severe burns and sepsis. J Burn Care Res 31:207–209. (PMID: 2006185810.1097/BCR.0b013e3181c89ee3)
      El-Gaml RM, El-Khodary NM, Abozahra RR et al (2022) Applying pharmacokinetic/pharmacodynamic measurements for linezolid in critically ill patients: optimizing efficacy and reducing resistance occurrence. Eur J Clin Pharmacol 78(8):1301–1310. (PMID: 35610318928335110.1007/s00228-022-03340-z)
      Dong H, Wang X, Dong Y et al (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38:296–300. (PMID: 2174122210.1016/j.ijantimicag.2011.05.007)
      Galar A, Valerio M, Muñoz P et al (2017) Systematic therapeutic drug monitoring for linezolid: variability and clinical impact. Antimicrob Agents Chemother 61(10):e00687-e717. (PMID: 28739788561052510.1128/AAC.00687-17)
      Gandelman K, Zhu T, Fahmi OA et al (2011) Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol 51:229–236. (PMID: 2037173610.1177/0091270010366445)
      Bolhuis MS, van Altena R, Uges DR et al (2010) Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother 54:5418–5419. (PMID: 20837753298129410.1128/AAC.00757-10)
      Pea F, Viale P, Cojutti P et al (2012) Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 67(8):2034–2042. (PMID: 2255314210.1093/jac/dks153)
      Rao GG, Konicki R, Cattaneo D et al (2020) Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit 42(1):83–92. (PMID: 3165219010.1097/FTD.0000000000000710)
      Lau C, Marriott D, Bui J et al (2023) LInezolid Monitoring to MInimise Toxicity (LIMMIT1): a multicentre retrospective review of patients receiving linezolid therapy and the impact of therapeutic drug monitoring. Int J Antimicrob Agents 61(5):106783. (PMID: 3692180810.1016/j.ijantimicag.2023.106783)
      Cojutti P, Maximova N, Crichiutti G et al (2015) Pharmacokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation. J Antimicrob Chemother 70(1):198–206. (PMID: 2518206610.1093/jac/dku337)
      Lin B, Hu Y, Xu P et al (2022) Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front Public Health 10:967311. (PMID: 36033811939960410.3389/fpubh.2022.967311)
      Alsultan A (2019) Determining therapeutic trough ranges for linezolid. Saudi Pharm J 27(8):1061–1063. (PMID: 31885465692116410.1016/j.jsps.2019.09.002)
      FDA (2023) Linezolid prescribing information. U.S. Food and Drug Administration. Accessed 15 Jun 2023.
      Han X, Wang J, Zan X et al (2022) Risk factors for linezolid-induced thrombocytopenia in adult inpatients. Int J Clin Pharm 44(2):330–338. (PMID: 3473136310.1007/s11096-021-01342-y)
      Kaya Kılıç E, Bulut C, Sönmezer MÇ et al (2019) Risk factors for linezolid-associated thrombocytopenia and negative effect of carbapenem combination. J Infect Dev Ctries 13(10):886–891. (PMID: 3208401810.3855/jidc.10859)
      Shi Y, Wu HL, Wu YH et al (2023) Safety and clinical efficacy of linezolid in children: a systematic review and meta-analysis. World J Pediatr 19(2):129–138. (PMID: 3656292910.1007/s12519-022-00650-1)
      Kato H, Hagihara M, Asai N et al (2021) A systematic review and meta-analysis of myelosuppression in pediatric patients treated with linezolid for Gram-positive bacterial infections. J Infect Chemother 27(8):1143–1150. (PMID: 3372702510.1016/j.jiac.2021.03.003)
      Ogami C, Tsuji Y, To H, Yamamoto Y (2019) Pharmacokinetics, toxicity and clinical efficacy of linezolid in Japanese pediatric patients. J Infect Chemother 25(12):979–986. (PMID: 3120892510.1016/j.jiac.2019.05.025)
      Jones SJ, Nichols KR, DeYoung HL et al (2015) Linezolid-associated thrombocytopenia in children with renal impairment. J Pediatric Infect Dis Soc 4(3):272–275. (PMID: 2640743310.1093/jpids/piu035)
      Duan L, Zhou Q, Feng ZA (2022) Regression model to predict linezolid induced thrombocytopenia in neonatal sepsis patients: a ten-year retrospective cohort study. Front Pharmacol 13:710099. (PMID: 35185555885038910.3389/fphar.2022.710099)
      Cattaneo D, Orlando G, Cozzi V et al (2013) Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents 41(6):586–589. (PMID: 2356263910.1016/j.ijantimicag.2013.02.020)
      Pea F, Furlanut M, Cojutti P et al (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610. (PMID: 20733043297614310.1128/AAC.00177-10)
      Chen ML (2006) Ethnic or racial differences revisited: impact of dosage regimen and dosage form on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 45(10):957–964. (PMID: 1698421010.2165/00003088-200645100-00001)
      Tsai D, Jamal JA, Davis JS et al (2015) Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 54(3):243–260. (PMID: 2538544610.1007/s40262-014-0209-3)
      Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637. (PMID: 19158356265368710.1681/ASN.2008030287)
      Tang Girdwood SC, Tang PH, Murphy ME et al (2021) Demonstrating feasibility of an opportunistic sampling approach for pharmacokinetic studies of β-lactam antibiotics in critically ill children. J Clin Pharmacol 61(4):565–573. (PMID: 3311133110.1002/jcph.1773)
      Leroux S, Turner MA, Guellec CB et al (2015) Pharmacokinetic studies in neonates: the utility of an opportunistic sampling design. Clin Pharmacokinet 54:1273–1285. (PMID: 2606305010.1007/s40262-015-0291-1)
      Cios A, Kuś K, Szymura-Oleksiak J (2013) Determination of linezolid in human serum by reversed-phase high-performance liquid chromatography with ultraviolet and diode array detection. Acta Pol Pharm 70(4):631–641. (PMID: 23923387)
      Thibault C, Kassir N, Goyer I et al (2019) Population pharmacokinetics of intravenous linezolid in premature infants. Pediatr Infect Dis J 38(1):82–88. (PMID: 2963462010.1097/INF.0000000000002067)
      Yang M, Zhao L, Wang X et al (2023) Population pharmacokinetics and dosage optimization of linezolid in critically ill pediatric patients. Antimicrob Agents Chemother 95(5):e02504–e025020. (PMID: 33558298)
      Shi Lu, Zhang Y, Duan L et al (2023) Dose optimization of linezolid in critically ill patients based on a population pharmacokinetic model: a two-center prospective interventional study. Int J Antimicrob Agents 62(2):106881. (PMID: 3730131310.1016/j.ijantimicag.2023.106881)
      Mockeliunas L, Keutzer L, Sturkenboom MGG et al (2022) Model-informed precision dosing of linezolid in patients with drug-resistant tuberculosis. Pharmaceutics 14(4):753. (PMID: 35456587903290610.3390/pharmaceutics14040753)
      Ballesteros García MDM, Orós Milián ME, Díaz Velázquez E et al (2017) Myelosupression induced by linezolid: a pediatric case. Arch Argent Pediatr 1:420–423.
      Ichie T, Suzuki D, Yasui K et al (2015) The association between risk factors and time of onset for thrombocytopenia in Japanese patients receiving linezolid therapy: a retrospective analysis. J Clin Pharm Ther 40:279–284. (PMID: 2573252510.1111/jcpt.12260)
      Choi GW, Lee JY, Chang MJ et al (2019) Risk factors for linezolid-induced thrombocytopenia in patients without haemato-oncologic diseases. Basic Clin Pharmacol Toxicol 124:228–234. (PMID: 3017180410.1111/bcpt.13123)
      Thi Phuong Thao L, Duc Trung N, Thi My L et al (2024) Association of clinical factors with thrombocytopenia in patients receiving linezolid treatment: a retrospective study. J Infect Dev Ctries 18(2):285–290. (PMID: 3848435710.3855/jidc.18488)
      Yang S, Guo W, Chen M et al (2023) Prevalence and risk factors for severe linezolid-associated thrombocytopenia in pediatric patients: an analysis of a public database. Medicine (Baltimore) 102(24):e34059. (PMID: 3732728810.1097/MD.0000000000034059)
      Chen C, Guo DH, Cao X et al (2012) Risk factors for thrombocytopenia in adult chinese patients receiving linezolid therapy. Curr Ther Res Clin Exp 73:195–206. (PMID: 24653521395510510.1016/j.curtheres.2012.07.002)
      Kiliaki S (2023) Piperacillin-tazobactam-induced immune thrombocytopenia: a case report. J Pharm Pract 36:451–452. (PMID: 3455834510.1177/08971900211048140)
      Tajima M, Kato Y, Matsumoto J et al (2016) Linezolid-induced thrombocytopenia is caused by suppression of platelet production via phosphorylation of myosin light chain 2. Biol Pharm Bull 39:1846–1851. (PMID: 2780345610.1248/bpb.b16-00427)
      Brown NM, Goodman AL, Horner C et al (2021) Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist 3(1):dlaa114. (PMID: 34223066821026910.1093/jacamr/dlaa114)
      Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18-55. (PMID: 2120891010.1093/cid/ciq146)
      World Health Organization (2024) Global action plan on antimicrobial resistance. Available at: https://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ . Accessed 15 Apr 2024.
    • Contributed Indexing:
      Keywords: Drug exposure; Hematologic toxicity; Linezolid; Pediatrics; Pharmacokinetics
    • Accession Number:
      ISQ9I6J12J (Linezolid)
      0 (Anti-Bacterial Agents)
    • Publication Date:
      Date Created: 20240825 Date Completed: 20241007 Latest Revision: 20241007
    • Publication Date:
      20241007
    • Accession Number:
      10.1007/s00228-024-03740-3
    • Accession Number:
      39183194