β-Ketoenamine Porous Organic Polymers for High-Efficiency Carbon Dioxide Adsorption and Separation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101319536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1864-564X (Electronic) Linking ISSN: 18645631 NLM ISO Abbreviation: ChemSusChem Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim : Wiley-VCH
    • Abstract:
      To mitigate the greenhouse effect, a number of porous organic polymers (POPs) has been developed for carbon capture. Considering the permanent quadrupole of symmetrical CO 2 molecules, the integration of electron-rich groups into POPs is a feasible way to enhance the dipole-quadrupole interactions between host and guest. To comprehensively explore the effect of pore environment, including specific surface area, pore size, and number of heteroatoms, on carbon dioxide adsorption capacity, we synthesized a series of microporous POPs with different content of β-ketoenamine structures via Schiff-base condensation reactions. These materials exhibit high BET specific surface areas, high stability, and excellent CO 2 adsorption capacity. It is worth mentioning that the CO 2 adsorption capacity and CO 2 /N 2 selectivity of TAPPy-TFP reaches 3.87 mmol g -1 and 27. This work demonstrates that the introduction of β-ketoenamine sites directly through condensation reaction is an effective strategy to improve the carbon dioxide adsorption performance of carbon dioxide.
      (© 2024 Wiley-VCH GmbH.)
    • References:
      L. K. Gohar, K. P. Shine, Weather Forecast 2007, 62, 307–311.
      S. Solomon, G. K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.
      K. Q. Zhang, R. Wang, Chem. Eng. J. 2024, 485, 149495.
      R. Quadrelli, S. Peterson, Energy Policy 2007, 35, 5938–5952.
      R. Navik, E. Wang, X. Ding, K. X. J. QiuLi, J. Li, Environ. Chem. Lett. 2024, 22, 1791–1830.
      G. T. Rochelle, Science 2009, 325, 1652–1654.
      B. Yoon, D. C. Calabro, L. S. Baugh, S. Raman, G. S. Hwang, J. Environ. 2022, 10, 108987.
      S. Ernst, Angew. Chem. Int. Ed. Engl. 2011, 50, 5425–5426.
      S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796–854.
      J. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew, J. Sunarso, Carbon Lett. 2021, 31, 201–252.
      C. Xin, Y. Ren, Z. Zhang, L. Liu, X. Wang, J. Yang, ACS Omega 2021, 6, 7739–7745.
      G. Han, Q. Qian, K. Mizrahi Rodriguez, Z. P. Smith, Ind. Eng. Chem. Res. 2020, 59, 7888–7900.
      A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
      Y. Yin, Y. Zhang, X. Zhou, B. Gui, G. Cai, J. Sun, C. Wang, J. Am. Chem. Soc. 2023, 145, 22329–22334.
      J. Wang, L. Wang, Y. Wang, D. Zhang, Q. Xiao, J. Huang, Y. N. Liu, Chin. J. Chem. Eng. 2022, 42, 91–103.
      M. Ding, X. Liu, P. Ma, J. Yao, Coord. Chem. Rev. 2022, 465, 214576.
      W. Wang, M. Zhou, D. Yuan, J. Mater. Chem. A 2017, 5, 1334–1347.
      X. Shi, H. Xiao, H. Azarabadi, J. Song, X. Wu, X. Chen, K. S. Lackner, Angew. Chem. Int. Ed. Engl. 2020, 59, 6984–7006.
      K. S. Song, P. W. Fritz, A. Coskun, Chem. Soc. Rev. 2022, 51, 9831–9852.
      Q. Sun, B. Aguila, S. Ma, Trends Chem. 2019, 1, 292–303.
      S. Fajal, S. Dutta, S. K. Ghosh, Mater. Horiz. 2023, 10, 4083–4138.
      D. H. Yang, Y. Tao, X. Ding, B. H. Han, Chem. Soc. Rev. 2022, 51, 761–791.
      Z. Zhang, J. Jia, Y. Zhi, S. Ma, X. Liu, Chem. Soc. Rev. 2022, 51, 2444–2490.
      Y. Wang, Y. Yang, Q. Deng, W. Chen, Y. Zhang, Y. Zhou, Z. Zou, Adv. Funct. Mater. 2023, 33, 2307179.
      S. Wang, H. Li, H. Huang, X. Cao, X. Chen, D. Cao, Chem. Soc. Rev. 2022, 51, 2031–2080.
      Z. Li, Y. W. Yang, J. Mater. Chem. B. 2017, 5, 9278–9290.
      Y. Zhu, P. Xu, X. Zhang, D. Wu, Chem. Soc. Rev. 2022, 51, 1377–1414.
      W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H. C. Zhou, J. Am. Chem. Soc. 2011, 133, 18126–18129.
      R. Dawson, D. J. Adams, A. I. Cooper, Chem. Sci. 2011, 2, 1173.
      S. J. Garibay, M. H. Weston, J. E. Mondloch, Y. J. Colón, O. K. Farha, J. T. Hupp, S. T. Nguyen, CrystEngComm 2013, 15, 1515–1519.
      X. Zhu, C. Tian, G. M. Veith, C. W. Abney, J. Dehaudt, S. Dai, J. Am. Chem. Soc. 2016, 138, 11497–11500.
      S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524–19527.
      R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 10741–10744.
      Y. Wang, N. Y. Huang, J. Q. Shen, P. Q. Liao, X. M. Chen, J. P. Zhang, J. Am. Chem. Soc. 2018, 140, 38–41.
      S. Luo, Q. Zhang, Y. Zhang, K. P. Weaver, W. A. Phillip, R. Guo, ACS Appl. Mater. Interfaces 2018, 10, 15174–15182.
      S. Sircar, R. Mohr, C. Ristic, M. B. Rao, J. Phys. Chem. B 1999, 103, 6539–6546.
      L. Ascherl, E. W. Evans, M. Hennemann, D. D. Nuzzo, A. G. Hufnagel, M. Beetz, R. H. Friend, T. Clark, T. Bein, F. Auras, Nat. Commun. 2018, 9 (1), 3802.
      L. Ding, H. Gao, F. Xie, W. Li, H. Bai, L. Li, Macromolecules 2017, 50, 956–962.
      L. Wang, Q. Xiao, D. Zhang, W. Kuang, J. Huang, Y. N. Liu, ACS Appl. Mater. Interfaces 2020, 12, 36652–36659.
      L. Wang, G. Chen, Q. Xiao, D. Zhang, Y. Sang, J. Huang, Ind. Eng. Chem. Res. 2020, 59, 19117–19125.
      D. Jia, L. Ma, Y. Wang, W. Zhang, J. Li, Y. Zhou, J. Wang, Chem. Eng. J. 2020, 390, 124652.
      Y. Xie, Q. Sun, Y. Fu, L. Song, J. Liang, X. Xu, H. Wang, J. Li, S. Tu, X. Lu, J. Li, J. Mater. Chem. A. 2017, 5, 25594–25600.
      K. Huang, F. Liu, S. Dai, J. Mater. Chem. A 2016, 4, 13063–13070.
      K. Huang, F. Liu, L. Jiang, S. Dai, ChemSusChem 2017, 10, 4144–4149.
      Y. Cui, Z. Xu, H.-Y. Li, D. J. Young, Z.-G. Ren, H.-X. Li, ACS Appl. Polym. Mater. 2020, 2, 4512–4520.
      A. H. Alahmed, M. E. Briggs, A. I. Cooper, D. J. Adams, J. Mater. Chem. A 2019, 7, 549–557.
      A. E. Sadak, Microporous Mesoporous Mater. 2021, 311, 110727.
      Y. Sang, J. Huang, Chem. Eng. J. 2020, 385, 123973.
      S. J. Yang, X. Ding, B. H. Han, Macromolecules 2018, 51, 947–953.
      S. Mane, Y. X. Li, X. Q. Liu, M. B. Yue, L. B. Sun, ACS Sustainable Chem. Eng. 2018, 6, 17419–17426.
      H. Zhou, B. Zhao, C. Fu, Z. Wu, C. Wang, Y. Ding, B. H. Han, A. Hu, Macromolecules 2019, 52, 3935–3941.
      K. Konstas, J. W. Taylor, A. W. Thornton, C. M. Doherty, W. X. Lim, T. J. Bastow, D. F. Kennedy, C. D. Wood, B. J. Cox, J. M. Hill, A. J. Hill, M. R. Hill, Angew. Chem. Int. Ed. Engl. 2012, 51, 6639–6642.
      S. Krishnan, C. V. Suneesh, J. Solid State Chem. 2021, 299, 122152.
      D. Chakraborty, R. Chatterjee, S. Mondal, S. K. Das, V. Amoli, M. Cho, A. Bhaumik, ACS Appl. Mater. Interfaces 2023, 15, 48326–48335.
      Z. Fang, Y. Wang, Y. Hu, B. Yao, Z. Ye, X. Peng, J. Mater. Chem. A 2023, 11, 18272–18279.
      L. Ascherl, E. W. Evans, M. Hennemann, D. Di Nuzzo, A. G. Hufnagel, M. Beetz, R. H. Friend, T. Clark, T. Bein, F. Auras, Nat. Commun. 2018, 9, 3802.
      M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511–1517.
      S. K. Kundu, A. Bhaumik, ACS Sustainable Chem. Eng. 2016, 4, 3697–3703.
      S. H. Jia, X. Ding, H. T. Yu, B. H. Han, RSC Adv. 2015, 5, 71095–71101.
      A. Alam, S. Mishra, A. Hassan, R. Bera, S. Dutta, K. DasSaha, N. Das, ACS Omega 2020, 5, 4250–4260.
    • Grant Information:
      2022YFE0130700 National Key Research and Development Program of China; 22375173 National Natural Science Foundation of China; 92163131 National Natural Science Foundation of China; 226-2023-00113 Fundamental Research Funds for the Central Universities
    • Contributed Indexing:
      Keywords: CO2/N2 separation; Carbon capture; Microporous materials; Porous organic polymers
    • Publication Date:
      Date Created: 20240824 Latest Revision: 20241025
    • Publication Date:
      20241025
    • Accession Number:
      10.1002/cssc.202401500
    • Accession Number:
      39180755