The function of antibodies.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Daëron M;Daëron M;Daëron M;Daëron M
  • Source:
    Immunological reviews [Immunol Rev] 2024 Nov; Vol. 328 (1), pp. 113-125. Date of Electronic Publication: 2024 Aug 24.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: England NLM ID: 7702118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-065X (Electronic) Linking ISSN: 01052896 NLM ISO Abbreviation: Immunol Rev Subsets: MEDLINE
    • Publication Information:
      Publication: <2002-> : Oxford : Blackwell
      Original Publication: Copenhagen, Munksgaard.
    • Subject Terms:
    • Abstract:
      Antibodies have multiple biological activities. They can both recognize and act on specific antigens. They can protect against and cause serious diseases, enhance and inhibit antibody responses, enable survival, and threaten life. Which among their many, often antagonistic properties explains that antibodies were selected half a billion years ago and transmitted to mammals across millions of generations? In other words, what is the function of antibodies? Here I examine how their structure endows antibodies with unique cognitive and effector properties that contribute to their multiple biological activities. I show that rather than specific properties, antibodies have large functional repertoires. They have a cognitive repertoire and an effector repertoire that are selected from larger available repertoires, themselves drawn at random from even larger virtual repertoires. These virtual repertoires provide the adaptive immune system with immense, constantly renewed, reservoirs of cognitive and effector functions that can be actualized at any time according to the context. I propose that such a flexibility, which enables living individuals to adapt to a rapidly changing environment, and even deal with an unknown future, may provide a better selective advantage than any particular function.
      (© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
    • References:
      Cavaillon JM. Historical links between toxinology and immunology. Pathog Dis. 2018;76(3). Accessed March 18, 2023. https://academic.oup.com/femspd/article/doi/10.1093/femspd/fty019/4923027.
      Wever PC, van Bergen L. Prevention of tetanus during the first world war. Med Humanit. 2012;38(2):78‐82.
      Maloney DG, Grillo‐López AJ, White CA, et al. IDEC‐C2B8 (rituximab) anti‐CD20 monoclonal antibody therapy in patients with relapsed low‐grade non‐Hodgkin's lymphoma. Blood. 1997;90(6):2188‐2195.
      Goldenberg MM. Trastuzumab, a recombinant DNA‐derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther. 1999;21(2):309‐318.
      Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune‐checkpoint inhibitors: long‐term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254‐267.
      Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, present and (foreseeable) future of biological anti‐TNF alpha therapy. J Clin Med. 2023;12(4):1630.
      D'Amato G, Liccardi G, Noschese P, Salzillo A, D'Amato M, Cazzola M. Anti‐IgE monoclonal antibody (omalizumab) in the treatment of atopic asthma and allergic respiratory diseases. Curr Drug Targets Inflamm Allergy. 2004;3(3):227‐229.
      Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139(3):S1‐S46.
      Tackenberg B, Nimmerjahn F, Lünemann JD. Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J Clin Immunol. 2010;30(S1):65‐69.
      Portier P, Richet C. De l'action anaphylactique de certains venins. CR Soc Biol. 1902;54:170‐172.
      Richet C. De l'anaphylaxie en général et de l'anaphylaxie par la mytilocongestive en particulier. Ann Inst Pasteur. 1907;21:497‐524.
      Longcope WT, Rackemann FM. The relation of circulating antibodies to serum disease. J Exp Med. 1918;27(3):341‐358.
      Ishizaka K, Ishizaka T. Identification of IgE. J Allergy Clin Immunol. 2016;137(6):1646‐1650.
      Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693‐704.
      Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911‐920.
      Holgate ST. The epidemic of allergy and asthma. Nature. 1999;402(S6760):2‐4.
      Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;14(11):212.
      van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J Autoimmun. 2020;110:102392.
      Ippolito A, Wallace D, Gladman D, et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus. 2011;20(3):250‐255.
      Cantoni S, Carpenedo M, Nichelatti M, et al. Clinical relevance of antiplatelet antibodies and the hepatic clearance of platelets in patients with immune thrombocytopenia. Blood. 2016;128(17):2183‐2185.
      Schreiber K, Sciascia S, de Groot PG, et al. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4(1):17103.
      Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795‐1803.
      Nihei Y, Haniuda K, Higashiyama M, et al. Identification of IgA autoantibodies targeting mesangial cells redefines the pathogenesis of IgA nephropathy. Sci Adv. 2023;9(12):eadd6734.
      Hart A, Singh D, Brown SJ, Wang JH, Kasiske BL. Incidence, risk factors, treatment, and consequences of antibody‐mediated kidney transplant rejection: a systematic review. Clin Transpl. 2021;35(7):e14320 Accessed March 18, 2023. https://onlinelibrary.wiley.com/doi/10.1111/ctr.14320.
      Paizis E, Murphy BF. Serum sickness. Encyclopedia of Immunology. Elsevier; 1998:2168‐2170 [cited 2023 Mar 18] Available from: https://linkinghub.elsevier.com/retrieve/pii/B0122267656005636.
      Urbaniak SJ, Greiss MA. RhD haemolytic disease of the fetus and the newborn. Blood Rev. 2000;14(1):44‐61.
      van Dijk B. Preventing RhD haemolytic disease of the newborn. BMJ. 1997;315(7121):1480‐1481.
      Neander K. The teleological notion of ‘function’. Australas J Philos. 1991;69(4):454‐468.
      Garson J. What Biological Functions Are and Why They Matter. Cambridge University Press; 2019 [cited 2023 Mar 19] Available from: https://www.cambridge.org/core/product/identifier/9781108560764/type/book.
      ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science. 2004;306(5696):636‐640.
      Wright L. Functions. Philos Rev. 1973;82(2):139.
      Dickins TE. The modern synthesis. The Modern Synthesis. Springer International Publishing; 2021:51‐79 (Evolutionary Biology—New Perspectives on Its Development); vol. 4. [cited 2023 Mar 19] Available from: https://link.springer.com/10.1007/978‐3‐030‐86422‐4_3.
      Kutschera U, KarlJ N. The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften. 2004;91(6):255‐276. [cited 2023 Mar 19] Available from: http://link.springer.com/10.1007/s00114‐004‐0515‐y.
      Kasahara M, Suzuki T, Pasquier LD. On the origins of the adaptive immune system: novel insights from invertebrates and cold‐blooded vertebrates. Trends Immunol. 2004;25(2):105‐111.
      Lefranc MP, Lefranc G. Antibody sequence and structure analyses using IMGT®: 30 years of Immunoinformatics. In: Tsumoto K, Kuroda D, eds. Computer‐Aided Antibody Design. Springer US; 2023:3‐59 (Methods in Molecular Biology; vol. 2552) [cited 2023 Mar 18] Available from: https://link.springer.com/10.1007/978‐1‐0716‐2609‐2_1.
      Grandien A, Modigliani Y, Freitas A, Andersson J, Coutinho A. Positive and negative selection of antibody repertoires during B‐cell differentiation. Immunol Rev. 1994;137(1):53‐89.
      Coutinho A, Forni L, Holmberg D, Ivars F, Vaz N. From an antigen‐centered, clonal perspective of immune responses to an organism‐centered, network perspective of autonomous activity in a self‐referential immune system. Immunol Rev. 1984;79(1):151‐168.
      Burnet FM. The Clonal Selection Theory of Acquired Immunity. Vanderbilt University Press; 1959.
      Pauling L. A theory of the structure and process of formation of antibodies. J Am Chem Soc. 1940;62(10):2643‐2657.
      Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class‐switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12(7):517‐531.
      Reth M. Antigen receptor tail clue. Nature. 1989;338(6214):383‐384.
      Daëron M, Latour S, Malbec O, et al. The same tyrosine‐based inhibition motif, in the intracytoplasmic domain of fc gamma RIIB, regulates negatively BCR‐, TCR‐, and FcR‐dependent cell activation. Immunity. 1995;3(5):635‐646.
      Daëron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203‐234.
      Challa DK, Velmurugan R, Ober RJ, Sally WE. FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. In: Daeron M, Nimmerjahn F, eds. Fc Receptors. Springer International Publishing; 2014:249‐272 (Current Topics in Microbiology and Immunology); vol. 382 [cited 2023 Mar 19] Available from: https://link.springer.com/10.1007/978‐3‐319‐07911‐0_12.
      Schlothauer T, Herter S, Koller CF, et al. Novel human IgG1 and IgG4 fc‐engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29(10):457‐466.
      Abboud N, Chow SK, Saylor C, et al. A requirement for FcγR in antibody‐mediated bacterial toxin neutralization. J Exp Med. 2010;207(11):2395‐2405.
      DiLillo DJ, Tan GS, Palese P, Ravetch JV. Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med. 2014;20(2):143‐151.
      Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV. Broadly neutralizing anti‐HIV‐1 antibodies require fc effector functions for in vivo activity. Cell. 2014;158(6):1243‐1253.
      Fox JM, Roy V, Gunn BM, et al. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc‐FcγR interaction on monocytes. Sci Immunol. 2019;4(32):eaav5062.
      Yamin R, Jones AT, Hoffmann HH, et al. Fc‐engineered antibody therapeutics with improved anti‐SARS‐CoV‐2 efficacy. Nature. 2021;599(7885):465‐470.
      Till SJ, Francis JN, Nouri‐Aria K, Durham SR. Mechanisms of immunotherapy. J Allergy Clin Immunol. 2004;113(6):1025‐1034.
      Ewan PW, Deighton J, Wilson AB, Lachmann PJ. Venom‐specific IgG antibodies in bee and wasp allergy: lack of correlation with protection from stings. Clin Exp Allergy. 1993;23(8):647‐660.
      Wachholz PA, Durham SR. Mechanisms of immunotherapy: IgG revisited. Curr Opin Allergy Clin Immunol. 2004;4(4):313‐318.
      Ovary Z, Benacerraf B, Bloch KJ. Properties of Guinea pig 7S antibodies. J Exp Med. 1963;117(6):951‐964.
      Ovary Z, Vaz NM, Warner NL. Passive anaphylaxis in mice with gamma‐G antibodies. V. Competitive effects of different immunoglobulins and inhibition of reactions with antiglobulin sera. Immunology. 1970;19(5):715‐727.
      Finkelman FD, Khodoun MV, Strait R. Human IgE‐independent systemic anaphylaxis. J Allergy Clin Immunol. 2016;137(6):1674‐1680.
      Burton OT, Logsdon SL, Zhou JS, et al. Oral immunotherapy induces IgG antibodies that act through FcγRIIb to suppress IgE‐mediated hypersensitivity. J Allergy Clin Immunol. 2014;134(6):1310‐1317.
      Cassard L, Jönsson F, Arnaud S, Daëron M. Fcγ receptors inhibit mouse and human basophil activation. J Immunol. 2012;189(6):2995‐3006.
      Heyman B. Regulation of antibody responses via antibodies, complement, and fc receptors. Annu Rev Immunol. 2000;18(1):709‐737.
      Heyman B. Antibodies as Natural Adjuvants. In: Daeron M, Nimmerjahn F, eds. Fc Receptors. Springer International Publishing; 2014:201‐219 (Current Topics in Microbiology and Immunology); vol. 382 [cited 2023 Mar 18] Available from: https://link.springer.com/10.1007/978‐3‐319‐07911‐0_9.
      de Ståhl TD, Dahlström J, Carroll MC, Heyman B. A role for complement in feedback enhancement of antibody responses by IgG3. J Exp Med. 2003;197(9):1183‐1190.
      Sörman A, Westin A, Heyman B. IgM is unable to enhance antibody responses in mice lacking C1q or C3. Scand J Immunol. 2017;85(5):381‐382.
      Applequist SE, Dahlström J, Jiang N, Molina H, Heyman B. Antibody production in mice deficient for complement receptors 1 and 2 can Be induced by IgG/Ag and IgE/Ag, but not IgM/Ag complexes. J Immunol. 2000;165(5):2398‐2403.
      Wernersson S, Karlsson MC, Dahlström J, Mattsson R, Verbeek JS, Heyman B. IgG‐mediated enhancement of antibody responses is low in Fc receptor gamma chain‐deficient mice and increased in fc gamma RII‐deficient mice. J Immunol. 1999;163(2):618‐622.
      Heyman B, Tianmin L, Gustavsson S. In vivo enhancement of the specific antibody response via the low‐affinity receptor for IgE. Eur J Immunol. 1993;23(7):1739‐1742.
      Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell responses in vivo via CD23+ B cells. J Immunol. 2005;175(3):1473‐1482.
      Zhang L, Ding Z, Xu H, Heyman B. Marginal zone B cells transport IgG3‐immune complexes to splenic follicles. J Immunol. 2014;193(4):1681‐1689.
      Ferguson AR. Marginal zone B cells transport and deposit IgM‐containing immune complexes onto follicular dendritic cells. Int Immunol. 2004;16(10):1411‐1422.
      Hjelm F, Karlsson MCI, Heyman B. A novel B cell‐mediated transport of IgE‐immune complexes to the follicle of the spleen. J Immunol. 2008;180(10):6604‐6610.
      Henningsson F, Ding Z, Dahlin JS, et al. IgE‐mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS One. 2011;6(7):e21760.
      de Jong JMG, Schuurhuis DH, Ioan‐Facsinay A, et al. Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II‐restricted CD4 + T cells upon immune‐complex uptake in vivo. Immunology. 2006;119(4):499‐506.
      Henry C, Jerne NK. Competition of 19S and 7S antigen receptors in thhe regulation of the primary immune response. J Exp Med. 1968;128(1):133‐152.
      Chan PL, Sinclair NR. Regulation of the immune response. VI. Inability of F(ab’) 2 antibody to terminate established immune responses and its ability to interfere with IgG antibody‐mediated immunosuppression. Immunology. 1973;24(2):289‐301.
      Phillips NE, Parker DC. Fc‐dependent inhibition of mouse B cell activation by whole anti‐mu antibodies. J Immunol. 1983;130(2):602‐606.
      Gergely J, Sármay G. Fc gamma RII‐mediated regulation of human B cells. Scand J Immunol. 1996;44(1):1‐10.
      Bergström JJE, Heyman B. IgG suppresses antibody responses in mice lacking C1q, C3, complement receptors 1 and 2, or IgG fc‐receptors. Waisman a, editor. PLoS One. 2015;10(11):e0143841.
      Karlsson MCI, Wernersson S, Diaz de Ståhl T, Gustavsson S, Heyman B. Efficient IgG‐mediated suppression of primary antibody responses in Fcγ receptor‐deficient mice. Proc Natl Acad Sci USA. 1999;96(5):2244‐2249.
      Bergström JJE, Xu H, Heyman B. Epitope‐specific suppression of IgG responses by passively administered specific IgG: evidence of epitope masking. Front Immunol. 2017;8:238 [cited 2023 Mar 19] Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2017.00238/full.
      Xu H, Zhang L, Heyman B. IgG‐mediated immune suppression in mice is epitope specific except during high epitope density conditions. Sci Rep. 2018;8(1):15292.
      Daëron M. Fc receptors as adaptive immunoreceptors. In: Daëron M, Nimmerjahn F, eds. Fc Receptors. Current Topics in Microbiology and Immunology. Springer International Publishing; 2014:131‐164. Available from: http://link.springer.com/10.1007/978‐3‐319‐07911‐0_7.
      Kerntke C, Nimmerjahn F, Biburger M. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 2020;5(11):118.
      Malbec O, Fong DC, Turner M, et al. Fc epsilon receptor I‐associated lyn‐dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol. 1998;160(4):1647‐1658.
      Kinet JP, Jouvin MH, Paolini R, Numerof R, Scharenberg A. IgE receptor (Fc epsilon RI) and signal transduction. Eur Respir J Suppl. 1996;22:116s‐118s.
      Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FeγRIIB. Nature. 1996;383(6597):263‐266.
      Kleinau S, Martinsson P, Heyman B. Induction and suppression of collagen‐induced arthritis is dependent on distinct Fcγ receptors. J Exp Med. 2000;191(9):1611‐1616.
      Nimmerjahn F, Ravetch JV. Antibodies, fc receptors and cancer. Curr Opin Immunol. 2007;19(2):239‐245.
      Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA. 1998;95(2):652‐656.
      Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6(4):443‐446.
      Kinsky RG, Voisin GA, Duc HT. Role of IgG1 in immunological enhancement—facilitation. In: Janković BD, Isaković K, eds. Microenvironmental Aspects of Immunity. Vol 29. Springer US; 1973:435‐442 (Advances in Experimental Medicine and Biology); [cited 2023 Mar 19] Available from: http://link.springer.com/10.1007/978‐1‐4615‐9017‐0_63.
      Kaliss N, Molomut N. The effect of prior injections of tissue antiserums on the survival of cancer homoiografts in mice. Cancer Res. 1952;12(2):110‐112.
      Cildir G, Yip KH, Pant H, Tergaonkar V, Lopez AF, Tumes DJ. Understanding mast cell heterogeneity at single cell resolution. Trends Immunol. 2021;42(6):523‐535.
      Moon TC, St Laurent CD, Morris KE, et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 2010;3(2):111‐128.
      Malbec O, Roget K, Schiffer C, et al. Peritoneal cell‐derived mast cells: an in vitro model of mature Serosal‐type mouse mast cells. J Immunol. 2007;178(10):6465‐6475.
      Zhao W, Kepley CL, Morel PA, Okumoto LM, Fukuoka Y, Schwartz LB. FcγRIIa, not FcγRIIb, is constitutively and functionally expressed on skin‐derived human mast cells. J Immunol. 2006;177(1):694‐701.
      Burton OT, Epp A, Fanny ME, et al. Tissue‐specific expression of the low‐affinity IgG receptor, FcγRIIb, on human mast cells. Front Immunol. 2018;6(9):1244.
      Vickery BP, Scurlock AM, Kulis M, et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J Allergy Clin Immunol. 2014;133(2):468‐475.
      Dobzhansky T. Nothing in biology makes sense except in the light of evolution. Am Biol Teach. 1973;35(3):125‐129.
      Darwin CMA. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray; 1859.
      Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy. 2023;78(4):940‐956.
      Shriner D, Rotimi CN. Whole‐genome‐sequence‐based haplotypes reveal single origin of the sickle allele during the Holocene wet phase. Am J Hum Genet. 2018;102(4):547‐556.
      Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolittle WF. Irremediable complexity? Science. 2010 12;330(6006):920‐921.
      Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol. 1999;49(2):169‐181.
      Lederman HM, Winkelstein JA. X‐linked agammaglobulinemia: an analysis of 96 patients. Medicine (Baltimore). 1985;64(3):145‐156.
      Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol. 2021;93(1):250‐256.
      Pancer Z, Cooper MD. The evolution of adaptive immunity. Annu Rev Immunol. 2006;24(1):497‐518.
      Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD. Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol. 2018 26;36(1):19‐42.
      Kim J, Im SP, Lee JS, et al. Globular‐shaped variable lymphocyte receptors B antibody multimerized by a hydrophobic clustering in hagfish. Sci Rep. 2018;8(1):10801.
      Pettinello R, Dooley H. The immunoglobulins of cold‐blooded vertebrates. Biomol Ther. 2014;4(4):1045‐1069.
      Akula S, Mohammadamin S, Hellman L. Fc receptors for immunoglobulins and their appearance during vertebrate evolution. Nikolaidis N, editor. PLoS One. 2014;9(5):e96903.
      Cummins R. Functional analysis. J Philos. 1975 20;72(20):741.
      Prior EW, Pargetter R, Jackson F. Three theses about dispositions. Am Philos Q. 1982;19(3):251‐257.
      Klunk J, Vilgalys TP, Demeure CE, et al. Evolution of immune genes is associated with the black death. Nature. 2022;611(7935):312‐319.
      Chen L, Ozato K. Innate immune memory in hematopoietic stem/progenitor cells: myeloid‐biased differentiation and the role of interferon. Front Immunol. 2021;12:621333.
      Netea MG, Domínguez‐Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375‐388.
      Blok BA, Arts RJW, van Crevel R, Benn CS, Netea MG. Trained innate immunity as underlying mechanism for the long‐term, nonspecific effects of vaccines. J Leukoc Biol. 2015;98(3):347‐356.
      de Candia P, Matarese G. Reimagining an immunological dogma. Nat Immunol. 2021;22(11):1355‐1358.
      Mayr E. Cause and effect in biology: kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science. 1961;134(3489):1501‐1506.
      Du Pasquier L. Meeting the demand for innate and adaptive immunities during evolution. Scand J Immunol. 2005;62(s1):39‐48.
      Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell. 2006;124(4):815‐822.
      Klein J. Are invertebrates capable of anticipatory immune responses? Scand J Immunol. 1989;29(5):499‐505.
    • Contributed Indexing:
      Keywords: antibody receptors; functional repertoires; selection
    • Accession Number:
      0 (Antibodies)
      0 (Antigens)
    • Publication Date:
      Date Created: 20240824 Date Completed: 20241220 Latest Revision: 20241225
    • Publication Date:
      20241225
    • Accession Number:
      10.1111/imr.13387
    • Accession Number:
      39180466