Individual peak alpha frequency correlates with visual temporal resolution, but only under specific task conditions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: : Oxford : Wiley-Blackwell
      Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
    • Subject Terms:
    • Abstract:
      The study of alpha band oscillations in the brain is a popular topic in cognitive neuroscience. A fair amount of research in recent years has focused on the potential role these oscillations may play in the discrete sampling of continuous sensory information. In particular, the question of whether or not peak frequency in the alpha band is linked with the temporal resolution of visual perception is a topic of ongoing debate. Some studies have reported a correlation between the two, whereas others were unable to observe a link. It is unclear whether these conflicting findings are due to differing methodologies and/or low statistical power, or due to the absence of a true relationship. Replication studies are needed to gain better insight into this matter. In the current study, we replicated an experiment published in a 2015 paper by Samaha and Postle. Additionally, we expanded on this study by adding an extra behavioural task, the critical flicker fusion task, to investigate if any links with peak alpha frequency are generalizable across multiple measures for visual temporal resolution. We succeeded in replicating some, but not all of Samaha and Postle's findings. Our partial replication suggests that there may be a link between visual temporal resolution and peak alpha frequency. However, this relationship may be very small and only apparent for specific stimulus parameters. The correlations found in our study did not generalize to other behavioural measures for visual temporal resolution.
      (© 2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
    • References:
      Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355–385. https://doi.org/10.1093/brain/57.4.355.
      Başar, E., Başar‐Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2–3), 241–248. https://doi.org/10.1016/S0167-8760(00)00145-8.
      Buergers, S., & Noppeney, U. (2022). The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6(5), 732–742. https://doi.org/10.1038/s41562-022-01294-x.
      Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009.
      Champely, S. (2020). pwr: Basic Functions for Power Analysis (Version 1.3‐0) [R package]. https://CRAN.R-project.org/package=pwr.
      Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48(7), 2498–2508. https://doi.org/10.1111/ejn.13747.
      Cohen, M. X. (2014). Fluctuations in oscillation frequency control spike timing and coordinate neural networks. Journal of Neuroscience, 34(27), 8988–8998. https://doi.org/10.1523/JNEUROSCI.0261-14.2014.
      Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376–383. https://doi.org/10.1016/j.cogbrainres.2004.03.009.
      Frossard, J., & Renaud, O. (2021). Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. Journal of Statistical Software, 99(15), 1–32. https://doi.org/10.18637/jss.v099.i15.
      Haarlem, C. S., O'Connell, R. G., Mitchell, K. J., & Jackson, A. L. (2024). The speed of sight: Individual variation in critical flicker fusion thresholds. PLoS ONE, 19(4), e0298007–13. https://doi.org/10.1371/journal.pone.0298007.
      Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64–68. https://doi.org/10.1016/j.neulet.2004.10.092.
      Harris, A. M. (2023). Phase resets undermine measures of phase‐dependent perception. Trends in Cognitive Sciences, 27(3), 224–226. https://doi.org/10.1016/j.tics.2022.12.008.
      Herzog, M. H., Kammer, T., & Scharnowski, F. (2016). Time slices: What is the duration of a percept? PLoS Biology, 14(4), e1002433. https://doi.org/10.1371/journal.pbio.1002433.
      Kayser, J., & Tenke, C. E. (2006). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clinical Neurophysiology, 117(2), 348–368. https://doi.org/10.1016/j.clinph.2005.08.034.
      Kayser, J., & Tenke, C. E. (2015). On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. International Journal of Psychophysiology, 97(3), 171–173. https://doi.org/10.1016/j.ijpsycho.2015.06.001.
      Keil, J., & Senkowski, D. (2018). Neural oscillations orchestrate multisensory processing. The Neuroscientist, 24(6), 609–626. https://doi.org/10.1177/1073858418755352.
      Keitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., & Benwell, C. S. Y. (2022). Rhythms in cognition: The evidence revisited. European Journal of Neuroscience, 55(11–12), 2991–3009. https://doi.org/10.1111/ejn.15740.
      Klimesch, W. (2012). Alpha‐band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007.
      Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009.
      Michail, G., Toran Jenner, L., & Keil, J. (2022). Prestimulus alpha power but not phase influences visual discrimination of long‐duration visual stimuli. European Journal of Neuroscience, 55(11–12), 3141–3153. https://doi.org/10.1111/ejn.15169.
      Morrow, A., & Samaha, J. (2022). No evidence for a single oscillator underlying discrete visual percepts. European Journal of Neuroscience, 55(11–12), 3054–3066. https://doi.org/10.1111/ejn.15362.
      Nelli, S., Itthipuripat, S., Srinivasan, R., & Serences, J. T. (2017). Fluctuations in instantaneous frequency predict alpha amplitude during visual perception. Nature Communications, 8(1), 2071. https://doi.org/10.1038/s41467-017-02176-x.
      Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high‐resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719. https://doi.org/10.1016/S1388-2457(00)00527-7.
      Pernet, C. R., Wilcox, R., & Rousselet, G. A. (2012). Robust correlation analyses: False positive and power validation using a new open source matlab toolbox. Frontiers in Psychology, 3, 606. https://doi.org/10.3389/fpsyg.2012.00606.
      Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event‐related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1–2), 39–46. https://doi.org/10.1016/S0167-8760(96)00066-9.
      Posit team. (2023). RStudio: Integrated development environment for R (version 2023.3.0.386). Posit Software, PBC. http://www.posit.co/.
      Prins, N., & Kingdom, F. A. A. (2018). Applying the model‐comparison approach to test specific research hypotheses in psychophysical research using the Palamedes toolbox. Frontiers in Psychology, 9(1250), 1250. https://doi.org/10.3389/fpsyg.2018.01250.
      R Core Team. (2022). R: A language and environment for statistical computing (version 4.2.1). R Foundation for Statistical Computing. https://www.R-project.org/.
      Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880. https://doi.org/10.1080/01621459.1984.10477105.
      Rousseeuw, P. J., & van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212–223. https://doi.org/10.1080/00401706.1999.10485670.
      Ruzzoli, M., Torralba, M., Morís Fernández, L., & Soto‐Faraco, S. (2019). The relevance of alpha phase in human perception. Cortex, 120, 249–268. https://doi.org/10.1016/j.cortex.2019.05.012.
      Samaha, J., & Postle, B. R. (2015). The speed of alpha‐band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985–2990. https://doi.org/10.1016/j.cub.2015.10.007.
      Schroeder, C. E., & Lakatos, P. (2009). Low‐frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18. https://doi.org/10.1016/j.tins.2008.09.012.
      The MathWorks Inc. (2022). Statistics and machine learning toolbox documentation. The MathWorks Inc. https://www.mathworks.com/help/stats/index.html.
      VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207–213. https://doi.org/10.1016/S1364-6613(03)00095-0.
      Verboven, S., & Hubert, M. (2005). LIBRA: A MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory Systems, 75(2), 127–136. https://doi.org/10.1016/j.chemolab.2004.06.003.
      Voeten, C. C. (2022). permutes: Permutation Tests for Time Series Data (Version 2.6) [R package]. https://CRAN.R-project.org/package=permutes.
      Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553–559. https://doi.org/10.1016/j.tics.2003.10.012.
    • Grant Information:
      Provost's Postgraduate Award 2019 Trinity College Dublin
    • Contributed Indexing:
      Keywords: alpha peak frequency; critical flicker fusion; perception speed; temporal resolution; vision
    • Publication Date:
      Date Created: 20240824 Date Completed: 20241003 Latest Revision: 20241003
    • Publication Date:
      20241003
    • Accession Number:
      10.1111/ejn.16519
    • Accession Number:
      39180268