Blood coagulation in Prediabetes clusters-impact on all-cause mortality in individuals undergoing coronary angiography.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101147637 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2840 (Electronic) Linking ISSN: 14752840 NLM ISO Abbreviation: Cardiovasc Diabetol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Metabolic clusters can stratify subgroups of individuals at risk for type 2 diabetes mellitus and related complications. Since obesity and insulin resistance are closely linked to alterations in hemostasis, we investigated the association between plasmatic coagulation and metabolic clusters including the impact on survival.
      Methods: Utilizing data from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, we assigned 917 participants without diabetes to prediabetes clusters, using oGTT-derived glucose and insulin, high-density lipoprotein cholesterol, triglycerides, and anthropometric data. We performed a comprehensive analysis of plasmatic coagulation parameters and analyzed their associations with mortality using proportional hazards models. Mediation analysis was performed to assess the effect of coagulation factors on all-cause mortality in prediabetes clusters.
      Results: Prediabetes clusters were assigned using published tools, and grouped into low-risk (clusters 1,2,4; n = 643) and high-risk (clusters 3,5,6; n = 274) clusters. Individuals in the high-risk clusters had a significantly increased risk of death (HR = 1.30; CI: 1.01 to 1.67) and showed significantly elevated levels of procoagulant factors (fibrinogen, FVII/VIII/IX), D-dimers, von-Willebrand factor, and PAI-1, compared to individuals in the low-risk clusters. In proportional hazards models adjusted for relevant confounders, elevated levels of fibrinogen, D-dimers, FVIII, and vWF were found to be associated with an increased risk of death. Multiple mediation analysis indicated that vWF significantly mediates the cluster-specific risk of death.
      Conclusions: High-risk prediabetes clusters are associated with prothrombotic changes in the coagulation system that likely contribute to the increased mortality in those individuals at cardiometabolic risk. The hypercoagulable state observed in the high-risk clusters indicates an increased risk for cardiovascular and thrombotic diseases that should be considered in future risk stratification and therapeutic strategies.
      (© 2024. The Author(s).)
    • References:
      Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, Yang Y, Hu Y, Huang Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020. https://doi.org/10.1136/bmj.m2297 . (PMID: 10.1136/bmj.m2297326692827362233)
      Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012. https://doi.org/10.1016/S0140-6736(12)60283-9 . (PMID: 10.1016/S0140-6736(12)60283-9226831283891203)
      Vistisen D, Witte DR, Brunner EJ, Kivimaki M, Tabak A, Jorgensen ME, Faerch K. Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care. 2018;41(4):899–906. (PMID: 10.2337/dc17-2530294532006463620)
      Schlesinger S, Neuenschwander M, Barbaresko J, Lang A, Maalmi H, Rathmann W, Roden M, Herder C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: umbrella review of meta-analyses of prospective studies. Diabetologia. 2022;65(2):275–85. (PMID: 10.1007/s00125-021-05592-334718834)
      Wagner R, Heni M, Tabak AG, Machann J, Schick F, Randrianarisoa E, Hrabe de Angelis M, Birkenfeld AL, Stefan N, Peter A, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021. https://doi.org/10.1038/s41591-020-1116-9 . (PMID: 10.1038/s41591-020-1116-9346639879356324)
      Prystupa K, Delgado GE, Moissl AP, Kleber ME, Birkenfeld AL, Heni M, Fritsche A, Marz W, Wagner R. Clusters of prediabetes and type 2 diabetes stratify all-cause mortality in a cohort of participants undergoing invasive coronary d iagnostics. Cardiovasc Diabetol. 2023. https://doi.org/10.1186/s12933-023-01923-3 . (PMID: 10.1186/s12933-023-01923-33759226010436494)
      Loeffen R, Spronk HM, ten Cate H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost. 2012;10(7):1207–16. (PMID: 10.1111/j.1538-7836.2012.04782.x22578148)
      Horber S, Lehmann R, Stefan N, Machann J, Birkenfeld AL, Wagner R, Heni M, Haring HU, Fritsche A, Peter A. Hemostatic alterations linked to body fat distribution, fatty liver, and insulin resistance. Mol Metab. 2021. https://doi.org/10.1016/j.molmet.2021.101262 . (PMID: 10.1016/j.molmet.2021.101262340821378165974)
      Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013;110(4):669–80. (PMID: 10.1160/TH13-01-007523765199)
      Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017;113(9):1046–54. (PMID: 10.1093/cvr/cvx08628472252)
      Horvei LD, Grimnes G, Hindberg K, Mathiesen EB, Njolstad I, Wilsgaard T, Brox J, Braekkan SK, Hansen JB. C-reactive protein, obesity, and the risk of arterial and venous thrombosis. J Thromb Haemost. 2016;14(8):1561–71. (PMID: 10.1111/jth.1336927208592)
      Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005. https://doi.org/10.1016/S0140-6736(05)67663-5 . (PMID: 10.1016/S0140-6736(05)67663-516338449)
      van der Toorn FA, de Mutsert R, Lijfering WM, Rosendaal FR, van Hylckama Vlieg A. Glucose metabolism affects coagulation factors: The NEO study. J Thromb Haemost. 2019;17(11):1886–97. (PMID: 10.1111/jth.1457331325222)
      Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor??1 and its potential use as a pred ictive marker in diet-induced prediabetes. Front Nutr. 2023. https://doi.org/10.3389/fnut.2023.1256427. (PMID: 10.3389/fnut.2023.12564273802436610652797)
      Frankel DS, Meigs JB, Massaro JM, Wilson PW, O’Donnell CJ, D’Agostino RB, Tofler GH. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease the framingham offspring study. Circulation. 2008. https://doi.org/10.1161/CIRCULATIONAHA.108.792986 . (PMID: 10.1161/CIRCULATIONAHA.108.792986190751032746947)
      Olie RH, van der Meijden PEJ, Ten Cate H. The coagulation system in atherothrombosis: Implications for new therapeutic strategies. Res Pract Thromb Haemost 2018, 2(2).
      Yap ES, Lijfering WM, Rosendaal FR, Cannegieter SC. Coagulation factors II, V, VII, IX, X and XI and mortality - a cohort study. Res Pract Thromb Haemost. 2023. https://doi.org/10.1016/j.rpth.2023.102193 . (PMID: 10.1016/j.rpth.2023.1021933807782310704489)
      Olson NC, Cushman M, Judd SE, Kissela BM, Safford MM, Howard G, Zakai NA. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study. J Thromb Haemost. 2017;15(6):1086–94. (PMID: 10.1111/jth.13698283934709797027)
      Yamagishi K, Aleksic N, Hannan PJ, Folsom AR, Inverstigators AS. Coagulation factors II, V, IX, X, XI, and XII, plasminogen, and alpha-2 antiplasmin and risk of coronary heart disease. J Atheroscler Thromb. 2010;17(4):402–9. (PMID: 10.5551/jat.367320379055)
      Yap ES, Timp JF, Flinterman LE, van Hylckama Vlieg A, Rosendaal FR, Cannegieter SC, Lijfering WM. Elevated levels of factor VIII and subsequent risk of all-cause mortality: results from the MEGA follow-up study. J Thromb Haemost. 2015;13(10):1833–42. (PMID: 10.1111/jth.1307126264493)
      Winkelmann BR, Marz W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J, Group LS. Rationale and design of the LURIC study–a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001, 2(1 Suppl 1).
      Junker R, Heinrich J, Schulte H, van de Loo J, Assmann G. Coagulation factor VII and the risk of coronary heart disease in healthy men. Arterioscler Thromb Vasc Biol. 1997;17(8):1539–44. (PMID: 10.1161/01.ATV.17.8.15399301633)
      Olson NC, Raffield LM, Lange LA, Lange EM, Longstreth WT Jr., Chauhan G, Debette S, Seshadri S, Reiner AP, Tracy RP. Associations of activated coagulation factor VII and factor VIIa-antithrombin levels with genome-wide polymorphisms and cardiovascular disease risk. J Thromb Haemost. 2018;16(1):19–30. (PMID: 10.1111/jth.1389929112333)
      Raffield LM, Lu AT, Szeto MD, Little A, Grinde KE, Shaw J, Auer PL, Cushman M, Horvath S, Irvin MR, et al. Coagulation factor VIII: Relationship to cardiovascular disease risk and whole genome sequence and epigenome-wide analysis in African Americans. J Thromb Haemost. 2020;18(6):1335–47. (PMID: 10.1111/jth.14741319858707274883)
      Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol. 2001;21(5):731–8. (PMID: 10.1161/01.ATV.21.5.73111348867)
      Tracy RP, Arnold AM, Ettinger W, Fried L, Meilahn E, Savage P. The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study. Arterioscler Thromb Vasc Biol. 1999;19(7):1776–83. (PMID: 10.1161/01.ATV.19.7.177610397698)
      Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation. 2008. https://doi.org/10.1161/CIRCULATIONAHA.107.722827 . (PMID: 10.1161/CIRCULATIONAHA.107.72282718347221)
      Sabater-Lleal M, Huffman JE, de Vries PS, Marten J, Mastrangelo MA, Song C, Pankratz N, Ward-Caviness CK, Yanek LR, Trompet S, et al. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation. 2019;139(5):620–35. (PMID: 10.1161/CIRCULATIONAHA.118.034532305867376438386)
      Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128(16):2007–16. (PMID: 10.1182/blood-2016-04-713289275878785073181)
      Terraube V, O’Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia. 2010;16(1):3–13. (PMID: 10.1111/j.1365-2516.2009.02005.x19473409)
      Van Schie MC, Wieberdink RG, Koudstaal PJ, Hofman A, Ikram MA, Witteman JC, Breteler MM, Leebeek FW, De Maat MP. Genetic determinants of von Willebrand factor plasma levels and the risk of stroke: the Rotterdam Study. J Thromb Haemost. 2012;10(4):550–6. (PMID: 10.1111/j.1538-7836.2012.04634.x22257027)
      van Loon JE, Kavousi M, Leebeek FW, Felix JF, Hofman A, Witteman JC, de Maat MP. von Willebrand factor plasma levels, genetic variations and coronary heart disease in an older population. J Thromb Haemost. 2012;10(7):1262–9. (PMID: 10.1111/j.1538-7836.2012.04771.x22568520)
      Atiq F, van de Wouw J, Sorop O, Heinonen I, de Maat MPM, Merkus D, Duncker DJ, Leebeek FWG. Endothelial Dysfunction, Atherosclerosis, and Increase of von Willebrand Factor and Factor VIII: A Randomized Controlled Trial in Swine. Thromb Haemost. 2021;121(5):676–86. (PMID: 10.1055/s-0040-172218533506473)
      Lamprou S, Koletsos N, Mintziori G, Anyfanti P, Trakatelli C, Kotsis V, Gkaliagkousi E, Triantafyllou A. Microvascular and Endothelial Dysfunction in Prediabetes. Life (Basel). 2023. https://doi.org/10.3390/life13030644 . (PMID: 10.3390/life1303064436983800)
      De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130(5):963–74. (PMID: 10.1038/sj.bjp.0703393108823791572156)
      Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, Marmot MG, Deanfield JE. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005–12. (PMID: 10.1161/CIRCULATIONAHA.108.76570119204308)
      Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J, Preckel B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J Clin Med. 2021. https://doi.org/10.3390/jcm10112419 . (PMID: 10.3390/jcm10112419349452468706734)
      Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: a prothrombotic factor? J Thromb Haemost. 2010;8(8):1663–9. (PMID: 10.1111/j.1538-7836.2010.03910.x20492456)
      Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22. (PMID: 10.1016/S0021-9150(01)00574-311755928)
      Kelem A, Adane T, Shiferaw E. Insulin Resistance-Induced Platelet Hyperactivity and a Potential Biomarker Role of Platelet Parameters: A Narrative Review. Diabetes Metab Syndr Obes. 2023;18(16):2843–53. (PMID: 10.2147/DMSO.S425469)
      Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease: a review. Atherosclerosis. 1992;95(2–3):105–17. (PMID: 10.1016/0021-9150(92)90014-81418086)
      Frischmuth T, Hindberg K, Aukrust P, Ueland T, Braekkan SK, Hansen JB, Morelli VM. Elevated plasma levels of plasminogen activator inhibitor-1 are associated with risk of future incident venous thromboembolism. J Thromb Haemost. 2022;20(7):1618–26. (PMID: 10.1111/jth.15701352890629314992)
      Tofler GH, Massaro J, O’Donnell CJ, Wilson PWF, Vasan RS, Sutherland PA, Meigs JB, Levy D. D’Agostino RB, Sr.: Plasminogen activator inhibitor and the risk of cardiovascular disease: The Framingham Heart Study. Thromb Res. 2016. https://doi.org/10.1016/j.thromres.2016.02.002 . (PMID: 10.1016/j.thromres.2016.02.002274470835722217)
      Collet JP, Montalescot G, Vicaut E, Ankri A, Walylo F, Lesty C, Choussat R, Beygui F, Borentain M, Vignolles N, et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation. 2003. https://doi.org/10.1161/01.CIR.0000083471.33820.3C . (PMID: 10.1161/01.CIR.0000083471.33820.3C14517154)
      Tipoe TL, Wu WKK, Chung L, Gong M, Dong M, Liu T, Roever L, Ho J, Wong MCS, Chan MTV, et al. Plasminogen Activator Inhibitor 1 for Predicting Sepsis Severity and Mortality Outcomes: A Systematic Review and Meta-Analysis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01218 . (PMID: 10.3389/fimmu.2018.01218299676036015919)
      Mavri A, Alessi MC, Bastelica D, Geel-Georgelin O, Fina F, Sentocnik JT, Stegnar M, Juhan-Vague I. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia. 2001;44(11):2025–31. (PMID: 10.1007/s00125010000711719834)
      Festa A, D’Agostino R Jr., Tracy RP, Haffner SM, Insulin Resistance Atherosclerosis S. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51(4):1131–7. (PMID: 10.2337/diabetes.51.4.113111916936)
      Lonardo A, Sookoian S, Pirola CJ, Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism. 2016. https://doi.org/10.1016/j.metabol.2015.09.017 . (PMID: 10.1016/j.metabol.2015.09.01726477269)
      Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69(9):1691–705. (PMID: 10.1136/gutjnl-2020-32062232321858)
      Horber S, Lehmann R, Fritsche L, Machann J, Birkenfeld AL, Haring HU, Stefan N, Heni M, Fritsche A, Peter A. Lifestyle Intervention Improves Prothrombotic Coagulation Profile in Individuals at High Risk for Type 2 Diabetes. J Clin Endocrinol Metab. 2021. https://doi.org/10.1210/clinem/dgab124 . (PMID: 10.1210/clinem/dgab12433659996)
      Westerbacka J, Yki-Jarvinen H, Turpeinen A, Rissanen A, Vehkavaara S, Syrjala M, Lassila R. Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol. 2002;22(1):167–72. (PMID: 10.1161/hq0102.10154611788478)
      Zara M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112840 . (PMID: 10.3390/ijms20112840312481866627292)
    • Contributed Indexing:
      Keywords: Cluster; Coagulation; Mortality; Prediabetes
    • Accession Number:
      0 (Biomarkers)
      0 (Blood Coagulation Factors)
      0 (Blood Glucose)
    • Publication Date:
      Date Created: 20240822 Date Completed: 20240823 Latest Revision: 20241116
    • Publication Date:
      20241118
    • Accession Number:
      PMC11342575
    • Accession Number:
      10.1186/s12933-024-02402-z
    • Accession Number:
      39175055