Tumour lysis syndrome.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101672103 Publication Model: Electronic Cited Medium: Internet ISSN: 2056-676X (Electronic) Linking ISSN: 2056676X NLM ISO Abbreviation: Nat Rev Dis Primers Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, [2015]-
    • Subject Terms:
    • Abstract:
      Tumour lysis syndrome (TLS) represents a critical oncological emergency characterized by extensive tumour cell breakdown, leading to the swift release of intracellular contents into the systemic circulation, outpacing homeostatic mechanisms. This process results in hyperuricaemia (a by-product of intracellular DNA release), hyperkalaemia, hyperphosphataemia, hypocalcaemia and the accumulation of xanthine. These electrolyte and metabolic imbalances pose a significant risk of acute kidney injury, cardiac arrhythmias, seizures, multiorgan failure and, rarely, death. While TLS can occur spontaneously, it usually arises shortly after the initiation of effective treatment, particularly in patients with a large cancer cell mass (defined as ≥500 g or ≥300 g/m 2 of body surface area in children). To prevent TLS, close monitoring and hydration to improve renal perfusion and urine output and to minimize uric acid or calcium phosphate precipitation in renal tubules are essential. Intervention is based on the risk of a patient of having TLS and can include rasburicase and allopurinol. Xanthine, typically enzymatically converted to uric acid, can accumulate when xanthine oxidases, such as allopurinol, are administered during TLS management. Whether measurement of xanthine is clinically useful to optimize the use of allopurinol or rasburicase remains to be determined.
      (© 2024. Springer Nature Limited.)
    • Comments:
      Erratum in: Nat Rev Dis Primers. 2024 Sep 9;10(1):65. doi: 10.1038/s41572-024-00557-3. (PMID: 39251620)
    • References:
      Howard, S. C. in Abeloff’s Clinical Oncology (eds Niederhuber, J. E. et al.) 572–580 (Elsevier, 2020).
      Howard, S. C., Jones, D. P. & Pui, C. H. The tumor lysis syndrome. N. Engl. J. Med. 364, 1844–1854 (2011). (PMID: 21561350343724910.1056/NEJMra0904569)
      Sharman, J. P. et al. A review of the incidence of tumor lysis syndrome in patients with chronic lymphocytic leukemia treated with venetoclax and debulking strategies. EJHaem 3, 492–506 (2022). (PMID: 35846043917596310.1002/jha2.427)
      Durani, U. & Hogan, W. J. Emergencies in haematology: tumour lysis syndrome. Br. J. Haematol. 188, 494–500 (2020). (PMID: 3177455110.1111/bjh.16278)
      Cairo, M. S. & Bishop, M. Tumour lysis syndrome: new therapeutic strategies and classification. Br. J. Haematol. 127, 3–11 (2004). (PMID: 1538497210.1111/j.1365-2141.2004.05094.x)
      Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007). (PMID: 17331245220644610.1186/cc5713)
      Durani, U., Shah, N. D. & Go, R. S. In-hospital outcomes of tumor lysis syndrome: a population-based study using the national inpatient sample. Oncologist 22, 1506–1509 (2017). (PMID: 28904174572802210.1634/theoncologist.2017-0147)
      Howard, S. C., Trifilio, S., Gregory, T. K., Baxter, N. & McBride, A. Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review. Ann. Hematol. 95, 563–573 (2016). (PMID: 2675826910.1007/s00277-015-2585-7)
      Kaur, V. & Swami, A. Ibrutinib-associated tumor lysis syndrome in a patient with mantle cell lymphoma: a case report. J. Oncol. Pharm. Pract. 23, 235–239 (2017). (PMID: 2697057310.1177/1078155216637218)
      Tam, C. S., Seymour, J. F. & Roberts, A. W. Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia. Semin. Oncol. 43, 274–279 (2016). (PMID: 2704070610.1053/j.seminoncol.2016.02.014)
      Kaur, V., Mehta, P., Johnsurd, J. & Govindarajan, R. Ibrutinib-associated tumor lysis syndrome in a patient with chronic lymphocytic leukemia. Blood 124, 3503–3505 (2014). (PMID: 2543147910.1182/blood-2014-08-591875)
      Alqurashi, R. M., Tamim, H. H., Alsubhi, Z. D., Alzahrani, A. A. & Tashkandi, E. Tumor lysis syndrome in patients with solid tumors: a systematic review of reported cases. Cureus 14, e30652 (2022). (PMID: 364395659685209)
      Wossmann, W., Schrappe, M., Meyer, U., Zimmermann, M. & Reiter, A. Incidence of tumor lysis syndrome in children with advanced stage Burkitt’s lymphoma/leukemia before and after introduction of prophylactic use of urate oxidase. Ann. Hematol. 82, 160–165 (2003). (PMID: 1263494810.1007/s00277-003-0608-2)
      Montesinos, P. et al. Tumor lysis syndrome in patients with acute myeloid leukemia: identification of risk factors and development of a predictive model. Haematologica 93, 67–74 (2008). (PMID: 1816678710.3324/haematol.11575)
      Howard, S. C. & Pui, C. H. Pitfalls in predicting tumor lysis syndrome. Leuk. Lymphoma 47, 782–785 (2006). (PMID: 1675385910.1080/10428190600765798)
      Hummel, M. et al. Recurrent chemotherapy-induced tumor lysis syndrome (TLS) with renal failure in a patient with chronic lymphocytic leukemia - successful treatment and prevention of TLS with low-dose rasburicase. Eur. J. Haematol. 75, 518–521 (2005). (PMID: 1631326610.1111/j.1600-0609.2005.00550.x)
      Kelkar, N. & Wang, J. Clinical features and outcomes of tumor lysis syndrome in patients with gastrointestinal cancers. J. Clin. Oncol. 40, https://doi.org/10.1200/JCO.2022.40.4_suppl.655 (2022).
      Jallad, B. et al. Tumor lysis syndrome in small cell lung cancer: a case report and review of the literature. Onkologie 34, 129–131 (2011). (PMID: 2135821910.1159/000324791)
      Jeha, S. Tumor lysis syndrome. Semin. Hematol. 38, 4–8 (2001). (PMID: 1169494510.1016/S0037-1963(01)90037-X)
      Ji, J. et al. A pharmacokinetic/pharmacodynamic model of tumor lysis syndrome in chronic lymphocytic leukemia patients treated with flavopiridol. Clin. Cancer Res. 19, 1269–1280 (2013). (PMID: 2330027610.1158/1078-0432.CCR-12-1092)
      Williams, S. M. & Killeen, A. A. Tumor lysis syndrome. Arch. Pathol. Lab. Med. 143, 386–393 (2019). (PMID: 3049969510.5858/arpa.2017-0278-RS)
      Cairo, M. S. et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood 109, 2736–2743 (2007). (PMID: 17138821185222510.1182/blood-2006-07-036665)
      Cairo, M. S. Recombinant urate oxidase (rasburicase): a new targeted therapy for prophylaxis and treatment of patients with hematologic malignancies at risk of tumor lysis syndrome. Clin. Lymphoma 3, 233–234 (2003). (PMID: 1267227210.1016/S1526-9655(11)70183-X)
      Rios-Olais, F. A., Gil-Lopez, F., Mora-Canas, A. & Demichelis-Gomez, R. Tumor lysis syndrome is associated with worse outcomes in adult patients with acute lymphoblastic leukemia. Acta Haematol. https://doi.org/10.1159/000534453 (2023). (PMID: 10.1159/00053445337963436)
      Xue, Y. et al. Clinical characteristics of tumor lysis syndrome in childhood acute lymphoblastic leukemia. Sci. Rep. 11, 9656 (2021). (PMID: 33958615810247610.1038/s41598-021-88912-2)
      Mato, A. R. et al. A predictive model for the detection of tumor lysis syndrome during AML induction therapy. Leuk. Lymphoma 47, 877–883 (2006). (PMID: 1675387310.1080/10428190500404662)
      Biro, E. et al. Daily serum phosphate increase as early and reliable indicator of kidney injury in children with leukemia and lymphoma developing tumor lysis syndrome. Pediatr. Nephrol. 38, 3117–3127 (2023). (PMID: 369434671043232910.1007/s00467-023-05923-z)
      Cairo, M. S., Coiffier, B., Reiter, A. & Younes, A. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br. J. Haematol. 149, 578–586 (2010). (PMID: 2033146510.1111/j.1365-2141.2010.08143.x)
      Harmon, J. et al. Liver metastasis as an independent predictor for mortality in patients who developed tumor lysis syndrome: analysis of 132 patients with solid tumors. J. Clin. Oncol. 36, https://doi.org/10.1200/JCO.2018.36.15_suppl.e18766 (2018).
      Zhang, Q. et al. Incidence, clinical characteristics and prognosis of tumor lysis syndrome following B-cell maturation antigen-targeted chimeric antigen receptor-T cell therapy in relapsed/refractory multiple myeloma. Front. Immunol. 14, 1125357 (2023). (PMID: 372151071019273210.3389/fimmu.2023.1125357)
      Abdel-Nabey, M. et al. Tumor lysis syndrome, acute kidney injury and disease-free survival in critically ill patients requiring urgent chemotherapy. Ann. Intensive Care 12, 15 (2022). (PMID: 35166948884748410.1186/s13613-022-00990-1)
      Dinnel, J., Moore, B. L., Skiver, B. M. & Bose, P. Rasburicase in the management of tumor lysis: an evidence-based review of its place in therapy. Core Evid. 10, 23–38 (2015). (PMID: 256103454298251)
      Cheuk, D. K., Chiang, A. K., Chan, G. C. & Ha, S. Y. Urate oxidase for the prevention and treatment of tumor lysis syndrome in children with cancer.Cochrane Database Syst. Rev. 6, CD006945 (2010).
      Gopakumar, K. G. et al. Risk-based management strategy and outcomes of tumor lysis syndrome in children with leukemia/lymphoma: analysis from a resource-limited setting. Pediatr. Blood Cancer 65, e27401 (2018). (PMID: 3010145410.1002/pbc.27401)
      Gopakumar, K. G., Thankamony, P., Seetharam, S. & Kusumakumary, P. Treatment of tumor lysis syndrome in children with leukemia/lymphoma in resource-limited settings — efficacy of a fixed low-dose rasburicase.Pediatr. Hematol. Oncol. 34, 206–211 (2017). (PMID: 2887299710.1080/08880018.2017.1348415)
      Magrath, I. et al. Paediatric cancer in low-income and middle-income countries. Lancet Oncol. 14, e104–e116 (2013). (PMID: 2343434010.1016/S1470-2045(13)70008-1)
      Israels, T. et al. SIOP PODC: recommendations for supportive care of children with cancer in a low-income setting. Pediatr. Blood Cancer 60, 899–904 (2013). (PMID: 2344109210.1002/pbc.24501)
      Gupta, S. et al. Incidence and predictors of treatment-related mortality in paediatric acute leukaemia in El Salvador. Br. J. Cancer 100, 1026–1031 (2009). (PMID: 19293804266999310.1038/sj.bjc.6604895)
      Ribeiro, R. C. et al. Baseline status of paediatric oncology care in ten low-income or mid-income countries receiving My Child Matters support: a descriptive study. Lancet Oncol. 9, 721–729 (2008). (PMID: 18672210355424210.1016/S1470-2045(08)70194-3)
      Kellie, S. J. & Howard, S. C. Global child health priorities: what role for paediatric oncologists? Eur. J. Cancer 44, 2388–2396 (2008). (PMID: 1879930610.1016/j.ejca.2008.07.022)
      Howard, S. C. et al. Improving outcomes for children with cancer in low-income countries in Latin America: a report on the recent meetings of the Monza International School of Pediatric Hematology/Oncology (MISPHO)-Part I. Pediatr. Blood Cancer 48, 364–369 (2007). (PMID: 1688360110.1002/pbc.21003)
      Howard, S. C. et al. Establishment of a pediatric oncology program and outcomes of childhood acute lymphoblastic leukemia in a resource-poor area. JAMA 291, 2471–2475 (2004). (PMID: 1516189810.1001/jama.291.20.2471)
      Trifilio, S. et al. Reduced-dose rasburicase (recombinant xanthine oxidase) in adult cancer patients with hyperuricemia. Bone Marrow Transpl. 37, 997–1001 (2006). (PMID: 10.1038/sj.bmt.1705379)
      Vadhan-Raj, S. et al. A randomized trial of a single-dose rasburicase versus five-daily doses in patients at risk for tumor lysis syndrome. Ann. Oncol. 23, 1640–1645 (2012). (PMID: 2201545110.1093/annonc/mdr490)
      Jeha, S. et al. Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial. Leukemia 19, 34–38 (2005). (PMID: 1551020310.1038/sj.leu.2403566)
      Lee, A. C., Li, C. H., So, K. T. & Chan, R. Treatment of impending tumor lysis with single-dose rasburicase. Ann. Pharmacother. 37, 1614–1617 (2003). (PMID: 1456579310.1345/aph.1D111)
      McDonnell, A. M., Lenz, K. L., Frei-Lahr, D. A., Hayslip, J. & Hall, P. D. Single-dose rasburicase 6 mg in the management of tumor lysis syndrome in adults. Pharmacotherapy 26, 806–812 (2006). (PMID: 1671613410.1592/phco.26.6.806)
      Rampello, E., Fricia, T. & Malaguarnera, M. The management of tumor lysis syndrome. Nat. Clin. Pract. Oncol. 3, 438–447 (2006). (PMID: 1689438910.1038/ncponc0581)
      Tiu, R. V., Mountantonakis, S. E., Dunbar, A. J. & Schreiber, M. J. Jr Tumor lysis syndrome. Semin. Thromb. Hemost. 33, 397–407 (2007). (PMID: 1752589710.1055/s-2007-976175)
      Cailleteau, A. et al. Cytokine release syndrome and tumor lysis syndrome in a multiple myeloma patient treated with palliative radiotherapy: a case report and review of the literature. Clin. Transl. Radiat. Oncol. 32, 24–28 (2022). (PMID: 34816023)
      Findakly, D., Luther, R. D. III & Wang, J. Tumor lysis syndrome in solid tumors: a comprehensive literature review, new insights, and novel strategies to improve outcomes. Cureus 12, e8355 (2020). (PMID: 324945487263728)
      Zhang, Q. et al. Risk factors of tumor lysis syndrome in relapsed/refractory multiple myeloma patients undergoing BCMA CAR-T cell therapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 51, 144–150 (2022). (PMID: 361612939353642)
      McBride, A., Trifilio, S., Baxter, N., Gregory, T. K. & Howard, S. C. Managing tumor lysis syndrome in the era of novel cancer therapies. J. Adv. Pract. Oncol. 8, 705–720 (2017). (PMID: 303339336188097)
      Shank, B. R. et al. Chimeric antigen receptor T cells in hematologic malignancies. Pharmacotherapy 37, 334–345 (2017). (PMID: 2807926510.1002/phar.1900)
      Abernathy, K. M. et al. Real-world analysis of tumor lysis syndrome in patients started on venetoclax combination for acute myeloid leukemia. J. Oncol. Pharm. Pract. 29, 1326–1333 (2023). (PMID: 3594611110.1177/10781552221118635)
      Khouderchah, C. J. et al. Tumor lysis syndrome in patients with acute myeloid leukemia treated with venetoclax and hypomethylating agents with or without dose ramp-up. Leuk. Lymphoma 65, 228–234 (2024). (PMID: 3793320310.1080/10428194.2023.2276056)
      Trinder, S. M. et al. Fatal tumor lysis syndrome in a pediatric patient with acute lymphoblastic leukemia treated with venetoclax. Pediatr. Blood Cancer 71, e30841 (2024). (PMID: 3814983710.1002/pbc.30841)
      Alhamid, N. et al. Pitfalls of current diagnostic criteria of tumor lysis syndrome. Kidney Blood Press. Res. https://doi.org/10.1159/000538328 (2024). (PMID: 10.1159/00053832838471470)
      Jones, D. P., Mahmoud, H. & Chesney, R. W. Tumor lysis syndrome: pathogenesis and management. Pediatr. Nephrol. 9, 206–212 (1995). (PMID: 779472210.1007/BF00860751)
      Navolanic, P. M. et al. Elitek-rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia 17, 499–514 (2003). (PMID: 1264693810.1038/sj.leu.2402847)
      Gangani, K. et al. Arrhythmia in tumor lysis syndrome and associated in-hospital mortality: a nationwide inpatient analysis. J. Arrhythm. 37, 121–127 (2021). (PMID: 3366489410.1002/joa3.12482)
      Bonato, F. O. B. & Canziani, M. E. F. Ventricular arrhythmia in chronic kidney disease patients. J. Bras. Nefrol. 39, 186–195 (2017). (PMID: 2906924310.5935/0101-2800.20170033)
      Boriani, G. et al. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making — a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace 17, 1169–1196 (2015). (PMID: 26108808628131010.1093/europace/euv202)
      Baqi, D. H. et al. Hypocalcemia as a cause of reversible heart failure: a case report and review of the literature. Ann. Med. Surg. 77, 103572 (2022). (PMID: 10.1016/j.amsu.2022.103572)
      Finlayson, B. & Reid, F. The expectation of free and fixed particles in urinary stone disease. Invest. Urol. 15, 442–448 (1978). (PMID: 649291)
      Khan, S. R. Histological aspects of the “fixed-particle” model of stone formation: animal studies. Urolithiasis 45, 75–87 (2017). (PMID: 2789639110.1007/s00240-016-0949-7)
      Kok, D. J., Boellaard, W., Ridwan, Y. & Levchenko, V. A. Timelines of the “free-particle” and “fixed-particle” models of stone-formation: theoretical and experimental investigations. Urolithiasis 45, 33–41 (2017). (PMID: 2791539410.1007/s00240-016-0946-x)
      Kok, D. J. & Khan, S. R. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 46, 847–854 (1994). (PMID: 799680610.1038/ki.1994.341)
      Simhadri, P. K. & Leslie, S. W. Calcium Deposition and Other Renal Crystal Diseases (StatPearls, 2024).
      Davidson, M. B. et al. Pathophysiology, clinical consequences, and treatment of tumor lysis syndrome. Am. J. Med. 116, 546–554 (2004). (PMID: 1506381710.1016/j.amjmed.2003.09.045)
      Wilson, F. P. & Berns, J. S. Onco-nephrology: tumor lysis syndrome. Clin. J. Am. Soc. Nephrol. 7, 1730–1739 (2012). (PMID: 2287943410.2215/CJN.03150312)
      Wilson, F. P. & Berns, J. S. Tumor lysis syndrome: new challenges and recent advances. Adv. Chronic Kidney Dis. 21, 18–26 (2014). (PMID: 24359983401724610.1053/j.ackd.2013.07.001)
      Richette, P. & Bardin, T. Gout. Lancet 375, 318–328 (2010). (PMID: 1969211610.1016/S0140-6736(09)60883-7)
      Locatelli, F. & Rossi, F. Incidence and pathogenesis of tumor lysis syndrome. Contrib. Nephrol. 147, 61–68 (2005). (PMID: 15604606)
      Arnaud, M. et al. Tumor lysis syndrome and AKI: beyond crystal mechanisms. J. Am. Soc. Nephrol. 33, 1154–1171 (2022). (PMID: 35523579916180710.1681/ASN.2021070997)
      Chen, R., Kang, R., Fan, X. G. & Tang, D. Release and activity of histone in diseases. Cell Death Dis. 5, e1370 (2014). (PMID: 25118930445431210.1038/cddis.2014.337)
      Allam, R., Kumar, S. V., Darisipudi, M. N. & Anders, H. J. Extracellular histones in tissue injury and inflammation. J. Mol. Med. 92, 465–472 (2014). (PMID: 2470610210.1007/s00109-014-1148-z)
      Abrams, S. T. et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160–169 (2013). (PMID: 23220920357065610.1164/rccm.201206-1037OC)
      Ferenbach, D. A. & Bonventre, J. V. Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol. Ther. 12, S41–S48 (2016). (PMID: 26972097547543810.1016/j.nephro.2016.02.005)
      Hunter, R. W. & Bailey, M. A. Hyperkalemia: pathophysiology, risk factors and consequences. Nephrol. Dial. Transpl. 34, iii2–iii11 (2019). (PMID: 10.1093/ndt/gfz206)
      Simon, L. V., Hashmi, M. F. & Farrell, M. W. Hyperkalemia (StatPearls, 2024).
      Kovesdy, C. P. Management of hyperkalaemia in chronic kidney disease. Nat. Rev. Nephrol. 10, 653–662 (2014). (PMID: 2522398810.1038/nrneph.2014.168)
      Cohen, L. F., Balow, J. E., Magrath, I. T., Poplack, D. G. & Ziegler, J. L. Acute tumor lysis syndrome. A review of 37 patients with Burkitt’s lymphoma. Am. J. Med. 68, 486–491 (1980). (PMID: 736923010.1016/0002-9343(80)90286-7)
      Trinkley, K. E. et al. QT interval prolongation and the risk of torsades de pointes: essentials for clinicians. Curr. Med. Res. Opin. 29, 1719–1726 (2013). (PMID: 2402093810.1185/03007995.2013.840568)
      Al-Khatib, S. M., LaPointe, N. M., Kramer, J. M. & Califf, R. M. What clinicians should know about the QT interval. JAMA 289, 2120–2127 (2003). (PMID: 1270947010.1001/jama.289.16.2120)
      Ashwin Reddy, S. Ventricular arrhythmia precipitated by severe hypocalcaemia secondary to primary hypoparathyroidism. Case Rep. Cardiol. 2019, 4851073 (2019). (PMID: 310894286476131)
      Tang, J. K. K. & Rabkin, S. W. Hypocalcemia-induced QT interval prolongation. Cardiology 147, 191–195 (2022). (PMID: 3507820410.1159/000515985)
      Han, P., Trinidad, B. J. & Shi, J. Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro 7, https://doi.org/10.1177/1759091415578050 (2015).
      Fishbein, J. T., Hebert, L. J. & Shadravan, I. An unusual cardiac arrhythmia caused by hypocalcemia. Am. J. Dis. Child. 136, 372–373 (1982). (PMID: 7072674)
      Schmidt, G. S., Weaver, T. D., Hoang, T. D. & Shakir, M. K. M. Severe symptomatic hypocalcemia, complicating cardiac arrhythmia following cinacalcet (Sensipar TM ) administration: a case report. Clin. Case Rep. 9, e04876 (2021). (PMID: 34659755850244110.1002/ccr3.4876)
      Pepe, J. et al. Diagnosis and management of hypocalcemia. Endocrine 69, 485–495 (2020). (PMID: 3236733510.1007/s12020-020-02324-2)
      Zuckermann, E. C. & Glaser, G. H. Anticonvulsive action of increased calcium concentration in cerebrospinal fluid. Arch. Neurol. 29, 245–252 (1973). (PMID: 472818410.1001/archneur.1973.00490280057008)
      Forsberg, M. et al. Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in the rat. J. Neurochem. 149, 452–470 (2019). (PMID: 3085121010.1111/jnc.14693)
      Khalid, S., Albaba, I. & Neu, K. Hypocalcemia: a little known cause of supraventricular tachyarrhythmia. Cureus 15, e38456 (2023). (PMID: 3727336210234768)
      Niemann, J. T. & Cairns, C. B. Hyperkalemia and ionized hypocalcemia during cardiac arrest and resuscitation: possible culprits for postcountershock arrhythmias? Ann. Emerg. Med. 34, 1–7 (1999). (PMID: 1038198810.1016/S0196-0644(99)70265-9)
      Johnson, J. D. & Jennings, R. Hypocalcemia and cardiac arrhythmias. Am. J. Dis. Child. 115, 373–376 (1968). (PMID: 5300343)
      Marcucci, G., Cianferotti, L. & Brandi, M. L. Clinical presentation and management of hypoparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 32, 927–939 (2018). (PMID: 3066555310.1016/j.beem.2018.09.007)
      Suzuki, T. et al. Super-acute onset of tumor lysis syndrome accompanied by hypercytokinemia during treatment of Hodgkin’s lymphoma with ABVD chemotherapy. Clin. Ther. 32, 527–531 (2010). (PMID: 2039998910.1016/j.clinthera.2010.03.010)
      Nakamura, M. et al. The role of hypercytokinemia in the pathophysiology of tumor lysis syndrome (TLS) and the treatment with continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter (PMMA-CHDF). Transfus. Apher. Sci. 40, 41–47 (2009). (PMID: 1910907110.1016/j.transci.2008.11.004)
      Soares, M., Feres, G. A. & Salluh, J. I. Systemic inflammatory response syndrome and multiple organ dysfunction in patients with acute tumor lysis syndrome. Clinics 64, 479–481 (2009). (PMID: 19488615269425310.1590/S1807-59322009000500016)
      Hijiya, N. et al. Severe cardiopulmonary complications consistent with systemic inflammatory response syndrome caused by leukemia cell lysis in childhood acute myelomonocytic or monocytic leukemia. Pediatr. Blood Cancer 44, 63–69 (2005). (PMID: 1536854710.1002/pbc.20192)
      Ariizumi, H. et al. Post-cytokine-release salt wasting as inverse tumor lysis syndrome in a non-cerebral natural killer-cell neoplasm. Intern. Med. 56, 1855–1861 (2017). (PMID: 28717082554867910.2169/internalmedicine.56.8125)
      Pourhassan, H., Kareem, W., Agrawal, V. & Aldoss, I. Important considerations in the intensive care management of acute leukemias. J. Intensive Care Med. 39, 291–305 (2024). (PMID: 3799055910.1177/08850666231193955)
      Perissinotti, A. J. et al. Expert consensus guidelines for the prophylaxis and management of tumor lysis syndrome in the United States: results of a modified Delphi panel. Cancer Treat. Rev. 120, 102603 (2023). (PMID: 3757953310.1016/j.ctrv.2023.102603)
      Garey, C. L. et al. Management of anterior mediastinal masses in children. Eur. J. Pediatr. Surg. 21, 310–313 (2011). (PMID: 2175112310.1055/s-0031-1279745)
      Burgoyne, L. L., Anghelescu, D. L., Tamburro, R. F. & De Armendi, A. J. A pediatric patient with a mediastinal mass and pulmonary embolus. Paediatr. Anaesth. 16, 487–491 (2006). (PMID: 1661830910.1111/j.1460-9592.2005.01765.x)
      Suzuki, D. et al. Tumor lysis syndrome as a risk factor for posterior reversible encephalopathy syndrome in children with hematological malignancies. Int. J. Hematol. 100, 485–489 (2014). (PMID: 2521669710.1007/s12185-014-1658-z)
      Pui, C. H. et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J. Clin. Oncol. 19, 697–704 (2001). (PMID: 1115702010.1200/JCO.2001.19.3.697)
      Pui, C. H., Jeha, S., Irwin, D. & Camitta, B. Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancy-associated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia 15, 1505–1509 (2001). (PMID: 1158720610.1038/sj.leu.2402235)
      Goldman, S. C. et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 97, 2998–3003 (2001). (PMID: 1134242310.1182/blood.V97.10.2998)
      Lupusoru, G. et al. Tumor lysis syndrome: an endless challenge in onco-nephrology. Biomedicines 10, 1012 (2022). (PMID: 35625753913878010.3390/biomedicines10051012)
      Coiffier, B., Altman, A., Pui, C. H., Younes, A. & Cairo, M. S. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J. Clin. Oncol. 26, 2767–2778 (2008). (PMID: 1850918610.1200/JCO.2007.15.0177)
      Heikamp, E. & Dreyer, Z. E. 50 years ago in the journal of pediatrics: prevention and management of acute hyperuricemia in childhood leukemia. J. Pediatr. 191, 178 (2017). (PMID: 2917330210.1016/j.jpeds.2017.09.041)
      Sfikakis, P. Diuretics and hyperuricemia. N. Engl. J. Med. 282, 1047–1048 (1970). (PMID: 544290110.1056/NEJM197004302821824)
      Sharma, S. K. & Indudhara, R. Chemodissolution of urinary uric acid stones by alkali therapy. Urol. Int. 48, 81–86 (1992). (PMID: 131798010.1159/000282302)
      Koratala, A. Tumor lysis syndrome with massive hyperphosphatemia and hyperuricemia. Clin. Case Rep. 5, 2158–2159 (2017). (PMID: 29225880571543110.1002/ccr3.1268)
      Boles, J. M. et al. Acute renal failure caused by extreme hyperphosphatemia after chemotherapy of an acute lymphoblastic leukemia. Cancer 53, 2425–2429 (1984). (PMID: 658526410.1002/1097-0142(19840601)53:11<2425::AID-CNCR2820531111>3.0.CO;2-R)
      Besarab, A. & Caro, J. F. Increased absolute calcium binding to albumin in hypoalbuminaemia. J. Clin. Pathol. 34, 1368–1374 (1981). (PMID: 732818449460510.1136/jcp.34.12.1368)
      Kost, G. J., Jammal, M. A., Ward, R. E. & Safwat, A. M. Monitoring of ionized calcium during human hepatic transplantation. Critical values and their relevance to cardiac and hemodynamic management. Am. J. Clin. Pathol. 86, 61–70 (1986). (PMID: 352419410.1093/ajcp/86.1.61)
      Krakoff, I. H. & Meyer, R. L. Prevention of hyperuricemia in leukemia and lymphoma: use of allopurinol, a xanthine oxidase inhibitor. JAMA 193, 1–6 (1965). (PMID: 1429770410.1001/jama.1965.03090010007001)
      DeConti, R. C. & Calabresi, P. Use of allopurinol for prevention and control of hyperuricemia in patients with neoplastic disease. N. Engl. J. Med. 274, 481–486 (1966). (PMID: 590428710.1056/NEJM196603032740902)
      Smalley, R. V. et al. Allopurinol: intravenous use for prevention and treatment of hyperuricemia. J. Clin. Oncol. 18, 1758–1763 (2000). (PMID: 1076443710.1200/JCO.2000.18.8.1758)
      Stamp, L. K. Safety profile of anti-gout agents: an update. Curr. Opin. Rheumatol. 26, 162–168 (2014). (PMID: 2437893010.1097/BOR.0000000000000031)
      Bellos, I., Kontzoglou, K., Psyrri, A. & Pergialiotis, V. Febuxostat administration for the prevention of tumour lysis syndrome: a meta-analysis. J. Clin. Pharm. Ther. 44, 525–533 (2019). (PMID: 30972811)
      White, W. B. et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N. Engl. J. Med. 378, 1200–1210 (2018). (PMID: 2952797410.1056/NEJMoa1710895)
      Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020). (PMID: 3318108110.1016/S0140-6736(20)32234-0)
      Chohan, S. Safety and efficacy of febuxostat treatment in subjects with gout and severe allopurinol adverse reactions. J. Rheumatol. 38, 1957–1959 (2011). (PMID: 2172470610.3899/jrheum.110092)
      Calogiuri, G. et al. Allopurinol hypersensitivity reactions: desensitization strategies and new therapeutic alternative molecules. Inflamm. Allergy Drug Targets 12, 19–28 (2013). (PMID: 2309236510.2174/1871528111312010004)
      Lee, S. J. & Terkeltaub, R. A. New developments in clinically relevant mechanisms and treatment of hyperuricemia. Curr. Rheumatol. Rep. 8, 224–230 (2006). (PMID: 1690108110.1007/s11926-996-0029-z)
      Ito, S. et al. Urine xanthine crystals in hematologic malignancies with tumor lysis syndrome. Intern. Med. 61, 3271–3275 (2022). (PMID: 35370238968381210.2169/internalmedicine.9332-22)
      Omokawa, A., Oguma, M., Ueki, S., Saga, T. & Hirokawa, M. Urine xanthine crystals in tumor lysis syndrome. Urology 120, e9–e10 (2018). (PMID: 3003009210.1016/j.urology.2018.07.009)
      Goswami, S., Hanson, A. E., Rajadhyaksha, E., Dangle, P. P. & Schwaderer, A. L. Allopurinol use leading to xanthine nephrolithiasis in pediatric tumor lysis syndrome: a case series. Pediatr. Nephrol. https://doi.org/10.1007/s00467-024-06413-6 (2024). (PMID: 10.1007/s00467-024-06413-638842722)
      Patte, C. et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood 97, 3370–3379 (2001). (PMID: 1136962610.1182/blood.V97.11.3370)
      Galardy, P. J. et al. Rasburicase in the prevention of laboratory/clinical tumour lysis syndrome in children with advanced mature B-NHL: a Children’s Oncology Group Report. Br. J. Haematol. 163, 365–372 (2013). (PMID: 2403260010.1111/bjh.12542)
      Coiffier, B. et al. Efficacy and safety of rasburicase (recombinant urate oxidase) for the prevention and treatment of hyperuricemia during induction chemotherapy of aggressive non-Hodgkin’s lymphoma: results of the GRAAL1 (Groupe d’Etude des Lymphomes de l’Adulte Trial on Rasburicase Activity in Adult Lymphoma) study. J. Clin. Oncol. 21, 4402–4406 (2003). (PMID: 1458143710.1200/JCO.2003.04.115)
      Bosly, A. et al. Rasburicase (recombinant urate oxidase) for the management of hyperuricemia in patients with cancer: report of an international compassionate use study. Cancer 98, 1048–1054 (2003). (PMID: 1294257410.1002/cncr.11612)
      Cortes, J. et al. Control of plasma uric acid in adults at risk for tumor lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone — results of a multicenter phase III study. J. Clin. Oncol. 28, 4207–4213 (2010). (PMID: 20713865497923610.1200/JCO.2009.26.8896)
      Digumarti, R., Sinha, S., Nirni, S. S., Patil, S. G. & Pedapenki, R. M. Efficacy of rasburicase (recombinant urate oxidase) in the prevention and treatment of malignancy-associated hyperuricemia: an Indian experience. Indian J. Cancer 51, 180–183 (2014). (PMID: 2510420510.4103/0019-509X.138299)
      Band, P. R. et al. Xanthine nephropathy in a patient with lymphosarcoma treated with allopurinol. N. Engl. J. Med. 283, 354–357 (1970). (PMID: 546840610.1056/NEJM197008132830708)
      LaRosa, C. et al. Acute renal failure from xanthine nephropathy during management of acute leukemia. Pediatr. Nephrol. 22, 132–135 (2007). (PMID: 1703933210.1007/s00467-006-0287-z)
      Dean, L. & Kane, M. In: Medical Genetics Summaries (eds Pratt, V. M. et al.) (National Center for Biotechnology Information (US), 2012).
      Prescribing information: ELITEK (rasburicase) for injection, for intravenous use, RX only. Sanofi-Aventis https://products.sanofi.us/elitek/Elitek.html (2002).
      Herrington, J. D. & Dinh, B. C. Fixed, low-dose rasburicase for the treatment or prevention of hyperuricemia in adult oncology patients. J. Oncol. Pharm. Pract. 21, 111–117 (2015). (PMID: 2454906010.1177/1078155214520821)
      Reeves, D. J. & Bestul, D. J. Evaluation of a single fixed dose of rasburicase 7.5 mg for the treatment of hyperuricemia in adults with cancer. Pharmacotherapy 28, 685–690 (2008). (PMID: 1850339510.1592/phco.28.6.685)
      Malaguarnera, M. et al. A single dose of rasburicase in elderly patients with hyperuricaemia reduces serum uric acid levels and improves renal function. Expert Opin. Pharmacother. 10, 737–742 (2009). (PMID: 1935122410.1517/14656560902781972)
      Vines, A. N., Shanholtz, C. B. & Thompson, J. L. Fixed-dose rasburicase 6 mg for hyperuricemia and tumor lysis syndrome in high-risk cancer patients. Ann. Pharmacother. 44, 1529–1537 (2010). (PMID: 2084151610.1345/aph.1P296)
      Coutsouvelis, J. et al. Effectiveness of a single fixed dose of rasburicase 3 mg in the management of tumour lysis syndrome. Br. J. Clin. Pharmacol. 75, 550–553 (2013). (PMID: 2268673410.1111/j.1365-2125.2012.04355.x)
      Eaddy, M., Seal, B., Tangirala, M., Davies, E. H. & O’Day, K. Economic comparison of rasburicase and allopurinol for treatment of tumor lysis syndrome in pediatric patients. Am. J. Health Syst. Pharm. 67, 2110–2114 (2010). (PMID: 2111600210.2146/ajhp100022)
      Cairo, M. S., Thompson, S., Tangirala, K. & Eaddy, M. T. A clinical and economic comparison of rasburicase and allopurinol in the treatment of patients with clinical or laboratory tumor lysis syndrome. Clin. Lymphoma Myeloma Leuk. 17, 173–178 (2017). (PMID: 2796502210.1016/j.clml.2016.11.003)
      Annemans, L. et al. Pan-European multicentre economic evaluation of recombinant urate oxidase (rasburicase) in prevention and treatment of hyperuricaemia and tumour lysis syndrome in haematological cancer patients. Support. Care Cancer 11, 249–257 (2003). (PMID: 1267346410.1007/s00520-002-0435-3)
      Jones, G. L., Will, A., Jackson, G. H., Webb, N. J. & Rule, S.; British Committee for Standards in Haematology. Guidelines for the management of tumour lysis syndrome in adults and children with haematological malignancies on behalf of the British Committee for Standards in Haematology. Br. J. Haematol. 169, 661–671 (2015). (PMID: 2587699010.1111/bjh.13403)
      Browning, L. A. & Kruse, J. A. Hemolysis and methemoglobinemia secondary to rasburicase administration. Ann. Pharmacother. 39, 1932–1935 (2005). (PMID: 1620439010.1345/aph.1G272)
      Hammami, M. B. et al. Rasburicase-induced hemolytic anemia and methemoglobinemia: a systematic review of current reports. Ann. Hematol. https://doi.org/10.1007/s00277-023-05364-6 (2023). (PMID: 10.1007/s00277-023-05364-637468669)
      Galo, J., Madrid, B. & Kupin, W. Lanthanum-induced radiopaque intestinal precipitates: a potential cause of intestinal foreign bodies. Case Rep. Nephrol. 2019, 1298674 (2019). (PMID: 315654506745136)
      Law, M. M., Smith, J. D., Schneider, H. G. & Wilson, S. Misclassification of calcium status in end-stage kidney disease using albumin-adjusted calcium levels. Nephrology 26, 725–732 (2021). (PMID: 3408921210.1111/nep.13910)
      Goransson, L. G., Skadberg, O. & Bergrem, H. Albumin-corrected or ionized calcium in renal failure? What to measure? Nephrol. Dial. Transpl. 20, 2126–2129 (2005). (PMID: 10.1093/ndt/gfh988)
      Rieg, T. et al. The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int. 72, 566–573 (2007). (PMID: 1757966210.1038/sj.ki.5002369)
      Crews, K. R. et al. Effect of allopurinol versus urate oxidase on methotrexate pharmacokinetics in children with newly diagnosed acute lymphoblastic leukemia. Cancer 116, 227–232 (2010). (PMID: 1983495810.1002/cncr.24681)
      Liu, J. Q. et al. The characteristics and risk factors for cisplatin-induced acute kidney injury in the elderly. Ther. Clin. Risk Manag. 14, 1279–1285 (2018). (PMID: 30100726606555510.2147/TCRM.S165531)
      Howard, S. C., McCormick, J., Pui, C. H., Buddington, R. K. & Harvey, R. D. Preventing and managing toxicities of high-dose methotrexate. Oncologist 21, 1471–1482 (2016). (PMID: 27496039515333210.1634/theoncologist.2015-0164)
      Nisula, S. et al. Six-month survival and quality of life of intensive care patients with acute kidney injury. Crit. Care 17, R250 (2013). (PMID: 24148658405680310.1186/cc13076)
      Villeneuve, P. M., Clark, E. G., Sikora, L., Sood, M. M. & Bagshaw, S. M. Health-related quality-of-life among survivors of acute kidney injury in the intensive care unit: a systematic review. Intensive Care Med. 42, 137–146 (2016). (PMID: 2662606210.1007/s00134-015-4151-0)
      Almutairi, M. S. et al. Acute kidney injury associated with piperacillin-tazobactam versus other antibiotics combined with vancomycin in critically ill patients: a retrospective cohort study. Saudi Pharm. J. 31, 101844 (2023). (PMID: 380282171065167010.1016/j.jsps.2023.101844)
      Kunming, P. et al. Vancomycin associated acute kidney injury in patients with infectious endocarditis: a large retrospective cohort study. Front. Pharmacol. 14, 1260802 (2023). (PMID: 380269761067934510.3389/fphar.2023.1260802)
      McClure, S., McElroy, L. & Gugkaeva, Z. Implementation of vancomycin AUC/MIC dosing vs traditional trough dosing and incidence of acute kidney injury at a rural community hospital. Am. J. Health Syst. Pharm. 81, e283–e288 (2024). (PMID: 3825305610.1093/ajhp/zxae014)
      Tyler Pitcock, C. et al. Association of vancomycin-induced acute kidney injury with trough versus AUC monitoring in patients receiving extended durations of therapy. Antimicrob. Steward. Healthc. Epidemiol. 3, e225 (2023). (PMID: 381562061075349310.1017/ash.2023.490)
      Venugopalan, V. et al. Association of piperacillin and vancomycin exposure on acute kidney injury during combination therapy. JAC Antimicrob. Resist. 6, dlad157 (2024). (PMID: 382599031080182710.1093/jacamr/dlad157)
      Fischer, J. M., Lertkovit, O., Howard, S. C., Assanasen, C. & Bleyer, A. Severe methotrexate toxicity following a capizzi cycle in an obese adolescent with acute lymphoblastic leukemia and hepatic steatosis. J. Pediatr. Hematol. Oncol. 46, e107–e110 (2024). (PMID: 3791682910.1097/MPH.0000000000002771)
      Villanueva, G. et al. A systematic review of high-dose methotrexate for adults with primary central nervous system lymphoma. Cancers 15, 1459 (2023). (PMID: 369002501000088610.3390/cancers15051459)
      Ibarra, M. et al. Insights from a pharmacometric analysis of HDMTX in adults with cancer: clinically relevant covariates for application in precision dosing. Br. J. Clin. Pharmacol. 89, 660–671 (2023). (PMID: 3599809910.1111/bcp.15506)
      Buddington, R. K. et al. Early clinical indicators of acute kidney injury caused by administering high-dose methotrexate therapy to juvenile pigs. Front. Nephrol. 3, 1193494 (2023). (PMID: 377902931054289810.3389/fneph.2023.1193494)
      Yokota, L. G. et al. Acute kidney injury in elderly patients: narrative review on incidence, risk factors, and mortality. Int. J. Nephrol. Renovasc. Dis. 11, 217–224 (2018). (PMID: 30147352609750610.2147/IJNRD.S170203)
      He, L. et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92, 1071–1083 (2017). (PMID: 28890325568316610.1016/j.kint.2017.06.030)
      Guo, R. et al. The road from AKI to CKD: molecular mechanisms and therapeutic targets of ferroptosis. Cell Death Dis. 14, 426 (2023). (PMID: 374431401034491810.1038/s41419-023-05969-9)
      Xu, R. et al. Gender differences in age-related decline in glomerular filtration rates in healthy people and chronic kidney disease patients. BMC Nephrol. 11, 20 (2010). (PMID: 20731848293636910.1186/1471-2369-11-20)
      Fenton, A. et al. Glomerular filtration rate: new age- and gender-specific reference ranges and thresholds for living kidney donation. BMC Nephrol. 19, 336 (2018). (PMID: 30466393624988310.1186/s12882-018-1126-8)
      Lima-Posada, I. et al. Gender differences in the acute kidney injury to chronic kidney disease transition. Sci. Rep. 7, 12270 (2017). (PMID: 28947737561296410.1038/s41598-017-09630-2)
      Morsch, C., Thome, F. S., Balbinotto, A., Guimaraes, J. F. & Barros, E. G. Health-related quality of life and dialysis dependence in critically ill patient survivors of acute kidney injury. Ren. Fail. 33, 949–956 (2011). (PMID: 2191066510.3109/0886022X.2011.615966)
      Hofhuis, J. G., van Stel, H. F., Schrijvers, A. J., Rommes, J. H. & Spronk, P. E. The effect of acute kidney injury on long-term health-related quality of life: a prospective follow-up study. Crit. Care 17, R17 (2013). (PMID: 23356544405710510.1186/cc12491)
      Richardson, K. L., Watson, R. S. & Hingorani, S. Quality of life following hospitalization-associated acute kidney injury in children. J. Nephrol. 31, 249–256 (2018). (PMID: 2915125110.1007/s40620-017-0450-6)
      Mayer, K. P. et al. Acute kidney injury contributes to worse physical and quality of life outcomes in survivors of critical illness. BMC Nephrol. 23, 137 (2022). (PMID: 35392844899193310.1186/s12882-022-02749-z)
      McNicholas, B., Akcan Arikan, A. & Ostermann, M. Quality of life after acute kidney injury. Curr. Opin. Crit. Care 29, 566–579 (2023). (PMID: 3786118410.1097/MCC.0000000000001090)
      Finkel, K. W. & Howard, S. C. Onco-nephrology: an invitation to a new field. J. Clin. Oncol. 32, 2389–2390 (2014). (PMID: 2493479110.1200/JCO.2014.56.5622)
      Takayama, A., Fukasawa, T., Takeuchi, M. & Kawakami, K. Timing of initiation of xanthine oxidase inhibitors based on serum uric acid level does not predict renoprognosis in patients with preserved kidney function. Metab. Syndr. Relat. Disord. https://doi.org/10.1089/met.2023.0238 (2024). (PMID: 10.1089/met.2023.023838170182)
      Martens, K. L. et al. Comparative effectiveness of rasburicase versus allopurinol for cancer patients with renal dysfunction and hyperuricemia. Leuk. Res. 89, 106298 (2020). (PMID: 3194559810.1016/j.leukres.2020.106298)
      Hagemeister, F. & Huen, A. The status of allopurinol in the management of tumor lysis syndrome: a clinical review. Cancer J. 11, S1–S10 (2005). (PMID: 15835720)
      Gomez, G. A., Stutzman, L. & Chu, T. M. Xanthine nephropathy during chemotherapy in deficiency of hypoxanthine-guanine phosphoribosyltransferase. Arch. Intern. Med. 138, 1017–1019 (1978). (PMID: 34813910.1001/archinte.1978.03630310091032)
      Wyngaarden, J. B. Allopurinol and xanthine nephropathy. N. Engl. J. Med. 283, 371–372 (1970). (PMID: 546840710.1056/NEJM197008132830713)
      Ichikawa, T. Xanthine calculi of the kidney. J. Urol. 72, 770–772 (1954). (PMID: 1321287410.1016/S0022-5347(17)67666-3)
      Kozlovskii, I. G. A case of xanthine calculi in the kidney. Urol. Mosc. 28, 47 (1963). (PMID: 14148548)
      Shields, L. B. E., Peppas, D. S. & Rosenberg, E. Xanthine calculi in a patient with Lesch-Nyhan syndrome and factor V Leiden treated with allopurinol: case report. BMC Pediatr. 18, 231 (2018). (PMID: 30001695604399910.1186/s12887-018-1197-5)
      Taylor, W. N. & Taylor, J. N. Xanthine calculi: case report. J. Urol. 68, 659–660 (1952). (PMID: 1299136910.1016/S0022-5347(17)68257-0)
      Mawji, A. et al. Smart triage: triage and management of sepsis in children using the point-of-care Pediatric Rapid Sepsis Trigger (PRST) tool. BMC Health Serv. Res. 20, 493 (2020). (PMID: 32493319726848910.1186/s12913-020-05344-w)
      Gunningberg, L. et al. Tracking pressure injuries as adverse events: national use of the global trigger tool over a 4-year period. J. Eval. Clin. Pract. 25, 21–27 (2019). (PMID: 3002754910.1111/jep.12996)
      Berrevoets, M. A. H. et al. An electronic trigger tool to optimise intravenous to oral antibiotic switch: a controlled, interrupted time series study. Antimicrob. Resist. Infect. Control 6, 81 (2017). (PMID: 28824799555876610.1186/s13756-017-0239-3)
      Hebert, G. et al. Evaluating iatrogenic prescribing: development of an oncology-focused trigger tool. Eur. J. Cancer 51, 427–435 (2015). (PMID: 2554953110.1016/j.ejca.2014.12.002)
      Khalek, E. R. et al. Highlights from the 13th African Continental Meeting of the International Society of Paediatric Oncology (SIOP), 6-9 March 2019, Cairo, Egypt. Ecancermedicalscience 13, 932 (2019). (PMID: 312814296592710)
      Chantada, G., Lam, C. G. & Howard, S. C. Optimizing outcomes for children with non-Hodgkin lymphoma in low- and middle-income countries by early correct diagnosis, reducing toxic death and preventing abandonment. Br. J. Haematol. 185, 1125–1135 (2019). (PMID: 3074065610.1111/bjh.15785)
      Howard, S. C. et al. The My Child Matters programme: effect of public-private partnerships on paediatric cancer care in low-income and middle-income countries. Lancet Oncol. 19, e252–e266 (2018). (PMID: 2972639010.1016/S1470-2045(18)30123-2)
      Davidson, A. & Howard, S. C. Delivering modern anticancer therapies in low- and middle-income settings: we can be evidence based. Pediatr. Blood Cancer 65, e27347 (2018). (PMID: 3005157910.1002/pbc.27347)
      Weaver, M. S., Howard, S. C., Renner, L., Harif, M. & Lam, C. G. Assessing national cancer control plan knowledge, prioritization, and engagement through a pediatric oncology cancer control workshop. J. Pediatr. Hematol. Oncol. 39, 362–364 (2017). (PMID: 2848626110.1097/MPH.0000000000000835)
      Howard, S. C. et al. A framework to develop adapted treatment regimens to manage pediatric cancer in low- and middle-income countries: the Pediatric Oncology in Developing Countries (PODC) Committee of the International Pediatric Oncology Society (SIOP). Pediatr. Blood Cancer 64, https://doi.org/10.1002/pbc.26879 (2017).
      Arora, R. S., Challinor, J. M., Howard, S. C. & Israels, T. Improving care for children with cancer in low- and middle-income countries — a SIOP PODC Initiative. Pediatr. Blood Cancer 63, 387–391 (2016). (PMID: 2679789110.1002/pbc.25810)
      Israels, T., Challinor, J., Howard, S. & Arora, R. H. Treating children with cancer worldwide — challenges and interventions. Pediatrics 136, 607–610 (2015). (PMID: 2637120110.1542/peds.2015-0300)
      Ceppi, F. et al. Supportive medical care for children with acute lymphoblastic leukemia in low- and middle-income countries. Expert Rev. Hematol. 8, 613–626 (2015). (PMID: 2601300510.1586/17474086.2015.1049594)
      Navarrete, M. et al. Treatment of childhood acute lymphoblastic leukemia in Central America: a lower-middle income countries experience. Pediatr. Blood Cancer 61, 803–809 (2014). (PMID: 2437611510.1002/pbc.24911)
      Yadav, S. P. et al. Barriers to cure for children with cancer in India and strategies to improve outcomes: a report by the Indian Pediatric Hematology Oncology Group. Pediatr. Hematol. Oncol. 31, 217–224 (2014). (PMID: 2467311510.3109/08880018.2014.893596)
      Denburg, A. E. et al. Defining essential childhood cancer medicines to inform prioritization and access: results from an international, cross-sectional survey. JCO Glob. Oncol. 8, e2200034 (2022). (PMID: 35749676925911910.1200/GO.22.00034)
      Espinoza, D. et al. How should childhood acute lymphoblastic leukemia relapses in low-income and middle-income countries be managed: the AHOPCA-ALL study group experience. Cancer 129, 771–779 (2023). (PMID: 3650407710.1002/cncr.34572)
      Lam, C. G., Howard, S. C., Bouffet, E. & Pritchard-Jones, K. Science and health for all children with cancer. Science 363, 1182–1186 (2019). (PMID: 3087251810.1126/science.aaw4892)
      Geel, J. A. et al. Pediatric cancer care in Africa: SIOP global mapping process. Pediatr. Blood Cancer 68, e29315 (2021). (PMID: 3445569310.1002/pbc.29315)
      Howard, S. C., Ribeiro, R. C. & Pui, C.-H. in Childhood Leukemias (ed. Pui, C.-H.) 660–700 (Cambridge Univ. Press, 2012).
    • Accession Number:
      63CZ7GJN5I (Allopurinol)
      08GY9K1EUO (rasburicase)
      EC 1.7.3.3 (Urate Oxidase)
      268B43MJ25 (Uric Acid)
      1AVZ07U9S7 (Xanthine)
    • Publication Date:
      Date Created: 20240822 Date Completed: 20240822 Latest Revision: 20240909
    • Publication Date:
      20240910
    • Accession Number:
      10.1038/s41572-024-00542-w
    • Accession Number:
      39174582