Remediation of cadmium contaminated soil using electrokinetic-phytoremediation system with rotary switching electrodes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • Subject Terms:
    • Abstract:
      Considering both electrokinetic remediation and phytoremediation have limitations, an electrokinetic phytoremediation (EP) system was constructed to obtain efficient and environmentally friendly remediation results. This study indicates that the electric field can promote the absorption of Cd by ryegrass with little impact on soil physicochemical properties under the condition of rotary switching electrodes, and the accumulation of Cd in the aboveground and underground parts of ryegrass increased by 145.2% and 93.7%, respectively. The DC electric field combined with ryegrass under rotary switching electrode mode proved to be the optimal condition for the remediation of Cd contaminated soil with a remediation efficiency of 66.7%. Moreover, the rotary switching of the electrodes alleviated the suppression of the growth of ryegrass by the DC electric field. During the EP remediation process, the electric field promoted the transformation of the residue state of Cd to the other forms, which accelerated the desorption rate of Cd from the soil and facilitated the migration of Cd into plants. In conclusion, EP is a green and efficient remediation technology for heavy metal contaminated soil with good application prospects.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Aghili, S., & Golzary, A. (2023). Greening the earth, healing the soil: A comprehensive life cycle assessment of phytoremediation for heavy metal contamination. Environmental Technology & Innovation, 32, 103241. https://doi.org/10.1016/j.eti.2023.103241. (PMID: 10.1016/j.eti.2023.103241)
      Azhar, U., Ahmad, H., Shafqat, H., Babar, M., Shahzad Munir, H. M., Sagir, M., Arif, M., Hassan, A., Rachmadona, N., Rajendran, S., Mubashir, M., & Khoo, K. S. (2022). Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental Research, 214, 113918. https://doi.org/10.1016/j.envres.2022.113918. (PMID: 10.1016/j.envres.2022.113918)
      Cameselle, C., Chirakkara, R. A., & Reddy, K. R. (2013). Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93(4), 626–636. https://doi.org/10.1016/j.chemosphere.2013.06.029. (PMID: 10.1016/j.chemosphere.2013.06.029)
      Cameselle, C., Gouveia, S., & Urréjola, S. (2019). Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere, 229, 481–488. https://doi.org/10.1016/j.chemosphere.2019.04.222. (PMID: 10.1016/j.chemosphere.2019.04.222)
      Chen, Q., Peng, P. Q., Hou, H. B., Ding, X., Long, J., Li, X. Y., & Liao, B. H. (2019). Effects of soil properties on the Cd threshold in typical paddy soils using BCR sequential extraction. Human and Ecological Risk Assessment: An International Journal, 25, 2160–2173. https://doi.org/10.1080/10807039.2018.1490998. (PMID: 10.1080/10807039.2018.1490998)
      Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environmental Science and Pollution Research, 27(2), 1319–1333. https://doi.org/10.1007/s11356-019-06967-1. (PMID: 10.1007/s11356-019-06967-1)
      Duan, C., Wang, Y., Wang, Q., Ju, W., Zhang, Z., Cui, Y., Bei, Y. J., Fan, Q., Wei, S., Li, S., & Fang, L. (2022). Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environmental Pollution, 300, 118978. https://doi.org/10.1016/j.envpol.2022.118978. (PMID: 10.1016/j.envpol.2022.118978)
      Gnanasundar, V. M., & Akshai Raj, R. (2021). Remediation of inorganic contaminants in soil using electrokinetics, phytoremediation techniques. Materials Today: Proceedings, 45, 950–956. https://doi.org/10.1016/j.matpr.2020.03.038. (PMID: 10.1016/j.matpr.2020.03.038)
      Gul, I., Manzoor, M., Kallerhoff, J., & Arshad, M. (2020). Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere, 258, 127405. https://doi.org/10.1016/j.chemosphere.2020.127405. (PMID: 10.1016/j.chemosphere.2020.127405)
      Karadaş, C., & Kara, D. (2012). Chemometric evaluation for the relation of BCR sequential extraction method and in vitro gastro-intestinal method for the assessment of metal bioavailability in contaminated soils in Turkey. Environmental Science and Pollution Research, 19(4), 1280–1295. https://doi.org/10.1007/s11356-011-0646-6. (PMID: 10.1007/s11356-011-0646-6)
      Khanam, R., Kumar, A., Nayak, A. K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment, 699, 134330. https://doi.org/10.1016/j.scitotenv.2019.134330. (PMID: 10.1016/j.scitotenv.2019.134330)
      Li, J., Chen, L., Zhang, Q., Wu, L., Zhang, J., Larson, S. L., Ballard, J. H., Ma, Y., Su, Y., & Han, F. X. (2021). Coupling electrokinetics and phytoremediation to remove uranium from contaminated soil: A laboratory pilot-scale study. ACS Earth and Space Chemistry, 5(12), 3448–3457. https://doi.org/10.1021/acsearthspacechem.1c00286. (PMID: 10.1021/acsearthspacechem.1c00286)
      Liu, Y., Chen, Y., Li, Y., Chen, L., Jiang, H., Jiang, L., Yan, H., Zhao, M., Hou, S., Zhao, C., & Chen, Y. (2023). Elaborating the mechanism of lead adsorption by biochar: Considering the impacts of water-washing and freeze-drying in preparing biochar. Bioresource Technology, 386, 129447. https://doi.org/10.1016/j.biortech.2023.129447. (PMID: 10.1016/j.biortech.2023.129447)
      Luo, J., Cai, L., Qi, S., Wu, J., & Gu, X. S. (2017). A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. Journal of Environmental Management, 204, 17–22. https://doi.org/10.1016/j.jenvman.2017.08.029. (PMID: 10.1016/j.jenvman.2017.08.029)
      Maphuhla, N. G., Lewu, F. B., & Oyedeji, O. O. (2021). The effects of physicochemical parameters on analysed soil enzyme activity from Alice landfill site. International Journal of Environmental Research and Public Health, 18, 010221. https://doi.org/10.3390/ijerph18010221. (PMID: 10.3390/ijerph18010221)
      Öztürk, F. (2023). Structural characterization (XRD, FTIR) and magnetic studies of Cd(II)-Sulfamethoxazole-2,2′-bipyridine: DFT and hirshfeld surface analysis. Journal of Molecular Structure, 1271, 133945. https://doi.org/10.1016/j.molstruc.2022.133945. (PMID: 10.1016/j.molstruc.2022.133945)
      Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K. A., Ng, H.-S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chemosphere.2021.132369. (PMID: 10.1016/j.chemosphere.2021.132369)
      Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M. K., Wang, Q., & Zhang, Z. (2017). Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety, 139, 254–262. https://doi.org/10.1016/j.ecoenv.2017.01.044. (PMID: 10.1016/j.ecoenv.2017.01.044)
      Shotyk, W., Barraza, F., Cuss, C. W., Grant-Weaver, I., Germani, C., Javed, M. B., Hillier, S., Noernberg, T., & Oleksandrenko, A. (2023). Natural enrichment of Cd and Tl in the bark of trees from a rural watershed devoid of point sources of metal contamination. Environmental Research, 237, 116973. https://doi.org/10.1016/j.envres.2023.116973. (PMID: 10.1016/j.envres.2023.116973)
      Siyar, R., Doulati Ardejani, F., Farahbakhsh, M., Norouzi, P., Yavarzadeh, M., & Maghsoudy, S. (2020). Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere, 246, 125802. https://doi.org/10.1016/j.chemosphere.2019.125802. (PMID: 10.1016/j.chemosphere.2019.125802)
      Wang, G., Pan, X., Zhang, S., Zhong, Q., Zhou, W., Zhang, X., Wu, J., Vijver, M. G., & Peijnenburg, W. J. G. M. (2020). Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms. Environmental Research, 186, 109554. https://doi.org/10.1016/j.envres.2020.109554. (PMID: 10.1016/j.envres.2020.109554)
      Wanitsawatwichai, K., & Sampanpanish, P. (2021). The combination of phytoremediation and electrokinetics remediation technology on arsenic contaminated remediation in tailing storage facilities from gold mine. Heliyon, 7(8), e07736. https://doi.org/10.1016/j.heliyon.2021.e07736. (PMID: 10.1016/j.heliyon.2021.e07736)
      Xu, J., Liu, C., Hsu, P. C., Zhao, J., Wu, T., Tang, J., Liu, K., & Cui, Y. (2019). Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications. https://doi.org/10.1038/s41467-019-10472-x. (PMID: 10.1038/s41467-019-10472-x)
      Yang, S., Zu, Y., Li, B., Bi, Y., Jia, L., He, Y., & Li, Y. (2019). Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere, 220, 69–76. https://doi.org/10.1016/j.chemosphere.2018.12.101. (PMID: 10.1016/j.chemosphere.2018.12.101)
      Yuan, L., Guo, P., Guo, S., Wang, J., & Huang, Y. (2021). Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environmental Research, 198, 111290. https://doi.org/10.1016/j.envres.2021.111290. (PMID: 10.1016/j.envres.2021.111290)
      Zhao, J., Qin, S., Pan, P., Chen, D., Tang, S., Chen, L., Wang, X., Gu, M., Tang, F., He, J., Wen, R., & He, B. (2023a). Microbial driving mechanism of soil conditioner on reducing cadmium uptake by rice and improving soil environment. Agriculture, Ecosystems & Environment, 349, 108452. https://doi.org/10.1016/j.agee.2023.108452. (PMID: 10.1016/j.agee.2023.108452)
      Zhao, P., Huang, P., Yan, X., Chukwuma, A., Yang, S., Yang, Z., Li, H., & Yang, W. (2023b). Inhibitory effect of exogenous mineral elements (Si, P, Zn, Ca, Mn, Se, Fe, S) on rice Cd accumulation and soil Cd bioavailability in Cd-contaminated farmlands: A meta-analysis. Chemosphere, 343, 140282. https://doi.org/10.1016/j.chemosphere.2023.140282. (PMID: 10.1016/j.chemosphere.2023.140282)
      Zheng, D. D., Lv, S., Liu, H. L., Yang, S. L., & Rao, Y. (2019). Analysis of extracted forms of Pb, Cd, As, Hg and Cu in Tibetan medicine Baimai ointment and its mineral materials with BCR sequential extraction procedure combined with ICP-MS. Chinese Journal of Pharmaceutical Analysis, 39, 702–708. https://doi.org/10.16155/j.0254-1793.2019.04.16. (PMID: 10.16155/j.0254-1793.2019.04.16)
    • Grant Information:
      PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai; PKJ2023-C09 Pudong New Area Science and Technology Development Foundation of Shanghai
    • Contributed Indexing:
      Keywords: Cadmium; Electrokinetic phytoremediation; Heavy metal; Rotary switching electrode; Ryegrass
    • Accession Number:
      0 (Soil Pollutants)
      00BH33GNGH (Cadmium)
      0 (Soil)
    • Publication Date:
      Date Created: 20240821 Date Completed: 20240821 Latest Revision: 20240928
    • Publication Date:
      20240928
    • Accession Number:
      10.1007/s10653-024-02162-5
    • Accession Number:
      39167250