Nrf2-mediated adenylosuccinate lyase promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma cells through ferroptosis escape.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Pancreatic cancer has one of the highest fatality rates and the poorest prognosis among all cancer types worldwide. Gemcitabine is a commonly used first-line therapeutic drug for pancreatic cancer; however, the rapid development of resistance to gemcitabine treatment has been observed in numerous patients with pancreatic cancer, and this phenomenon limits the survival benefit of gemcitabine. Adenylosuccinate lyase (ADSL) is a crucial enzyme that serves dual functions in de novo purine biosynthesis, and it has been demonstrated to be associated with clinical aggressiveness, prognosis, and worse patient survival for various cancer types. In the present study, we observed significantly lower ADSL levels in gemcitabine-resistant cells (PANC-1/GemR) than in parental PANC-1 cells, and the knockdown of ADSL significantly increased the gemcitabine resistance of parental PANC-1 cells. We further demonstrated that ADSL repressed the expression of CARD-recruited membrane-associated protein 3 (Carma3), which led to increased gemcitabine resistance, and that nuclear factor erythroid 2-related factor 2 (Nrf2) regulated ADSL expression in parental PANC-1 cells. These results indicate that ADSL is a candidate therapeutic target for pancreatic cancer involving gemcitabine resistance and suggest that the Nrf2/ADSL/Carma3 pathway has therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Anandhan, A., Dodson, M., Schmidlin, C. J., Liu, P., & Zhang, D. D. (2020). Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chemical Biology, 27(4), 436–447.
      Camici, M., Garcia‐Gil, M., Pesi, R., Allegrini, S., & Tozzi, M. G. (2019). Purine‐metabolising enzymes and apoptosis in cancer. Cancers, 11(9), 1354.
      Chang, T. Y., Wu, C. T., Sheu, M. L., Yang, R. S., & Liu, S. H. (2021). CARMA3 promotes colorectal cancer cell motility and cancer stemness via YAP‐mediated NF‐kappaB activation. Cancers (Basel), 13(23), 5946. https://doi.org/10.3390/cancers13235946.
      Chen, C., Zhao, S., Zhao, X., Cao, L., Karnad, A., Kumar, A. P., & Freeman, J. W. (2022). Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R‐dependent upregulation of CD44 expression and isoform switching. Cell Death & Disease, 13(8), 682.
      Chen, X., Chen, S., & Yu, D. (2020). Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites, 10(7), 289.
      Cioce, M., Valerio, M., Casadei, L., Pulito, C., Sacconi, A., Mori, F., Biagioni, F., Manetti, C., Muti, P., Strano, S., & Blandino, G. (2014). Metformin‐induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 5(12), 4129–4143.
      Davison, C., Morelli, R., Knowlson, C., McKechnie, M., Carson, R., Stachtea, X., McLaughlin, K. A., Prise, V. E., Savage, K., Wilson, R. H., Mulligan, K. A., Wilson, P. M., Ladner, R. D., & LaBonte, M. J. (2021). Targeting nucleotide metabolism enhances the efficacy of anthracyclines and anti‐metabolites in triple‐negative breast cancer. NPJ Breast Cancer, 7(1), 38.
      Gao, T., Díaz‐Hirashi, Z., & Verdeguer, F. (2018). Metabolic signaling into chromatin modifications in the regulation of gene expression. International Journal of Molecular Sciences, 19(12), 4108.
      Helleday, T., & Rudd, S. G. (2022). Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Molecular Oncology, 16(21), 3792–3810.
      El Hout, M., Dos Santos, L., Hamaï, A., & Mehrpour, M. (2018). A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Seminars in Cancer Biology, 53, 125–138.
      Hu, J. X., Zhao, C. F., Chen, W. B., Liu, Q. C., Li, Q. W., Lin, Y. Y., & Gao, F. (2021). Pancreatic cancer: A review of epidemiology, trend, and risk factors. World Journal of Gastroenterology, 27(27), 4298–4321.
      Hu, Y., Yan, C., Mu, L., Huang, K., Li, X., Tao, D., Wu, Y., & Qin, J. (2015). Fibroblast‐derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 10(5), e0125625.
      Kim, M. J., Kim, H. S., Kang, H. W., Lee, D. E., Hong, W. C., Kim, J. H., Kim, M., Cheong, J. H., Kim, H. J., & Park, J. S. (2023). SLC38A5 modulates ferroptosis to overcome gemcitabine resistance in pancreatic cancer. Cells, 12(20), 2509.
      Lan, X., Robin, G., Kasnik, J., Wong, G., & Abdel‐Rahman, O. (2023). Challenges in diagnosis and treatment of pancreatic exocrine insufficiency among patients with pancreatic ductal adenocarcinoma. Cancers, 15(4), 1331.
      Li, W., Zhu, Y., Zhang, K., Yu, X., Lin, H., Wu, W., Peng, Y., & Sun, J. (2020). PROM2 promotes gemcitabine chemoresistance via activating the Akt signaling pathway in pancreatic cancer. Experimental & Molecular Medicine, 52(3), 409–422.
      Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and cancer stem cells. Cell Communication and Signaling, 19(1), 19.
      Liao, J., Song, Q., Li, J., Du, K., Chen, Y., Zou, C., & Mo, Z. (2021a). Carcinogenic effect of adenylosuccinate lyase (ADSL) in prostate cancer development and progression through the cell cycle pathway. Cancer Cell International, 21(1), 467.
      Liao, X., Guo, Y., He, Y., Xiao, Y., Li, J., & Liu, R. (2021b). Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacological Research, 173, 105834.
      Lu, T. P., Wu, C. H., Chang, C. C., Chan, H. C., Chattopadhyay, A., Lee, W. C., Chiang, C. J., Lee, H. Y., & Tien, Y. W. (2022). Distinct survival outcomes in subgroups of stage III pancreatic cancer patients: Taiwan cancer registry and surveillance, epidemiology and end results registry. Annals of Surgical Oncology, 29(3), 1608–1615.
      Ludwig, N., Gillespie, D. G., Reichert, T. E., Jackson, E. K., & Whiteside, T. L. (2020). Purine metabolites in tumor‐derived exosomes may facilitate immune escape of head and neck squamous cell carcinoma. Cancers, 12(6), 1602.
      Man, X., Liu, T., Jiang, Y., Zhang, Z., Zhu, Y., Li, Z., Kong, M., & He, J. (2019). Silencing of CARMA3 inhibits bladder cancer cell migration and invasion via deactivating beta‐catenin signaling pathway. OncoTargets and Therapy, 12, 6309–6322.
      Marie, S., Race, V., Nassogne, M. C., Vincent, M. F., & Van den Berghe, G. (2002). Mutation of a nuclear respiratory factor 2 binding site in the 5’ untranslated region of the ADSL gene in three patients with adenylosuccinate lyase deficiency. The American Journal of Human Genetics, 71(1), 14–21.
      McEwan, C., Kamila, S., Owen, J., Nesbitt, H., Callan, B., Borden, M., Nomikou, N., Hamoudi, R. A., Taylor, M. A., Stride, E., McHale, A. P., & Callan, J. F. (2016). Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials, 80, 20–32.
      Mora, J., Krepline, A. N., Aldakkak, M., Christians, K. K., George, B., Hall, W. A., Erickson, B. A., Kulkarni, N., Evans, D. B., & Tsai, S. (2021). Adjuvant therapy rates and overall survival in patients with localized pancreatic cancer from high Area Deprivation Index neighborhoods. The American Journal of Surgery, 222(1), 10–17.
      Motoi, F. (2021). Overcoming acquired chemo‐resistance to gemcitabine: Implications from the perspective of multi‐modal therapy including surgery for pancreatic cancer. Cancer Drug Resistance, 4(4), 881–884.
      Mu, L., Huang, K., Hu, Y., Yan, C., Li, X., Tao, D., Gong, J., & Qin, J. (2017). Small‐sized colorectal cancer cells harbor metastatic tumor‐initiating cells. Oncotarget, 8(64), 107907–107919.
      Navarro, C., Ortega, Á., Santeliz, R., Garrido, B., Chacín, M., Galban, N., Vera, I., De Sanctis, J. B., & Bermúdez, V. (2022). Metabolic reprogramming in cancer cells: Emerging molecular mechanisms and novel therapeutic approaches. Pharmaceutics, 14(6), 1303.
      Ngoi, N. Y. L., Eu, J. Q., Hirpara, J., Wang, L., Lim, J. S. J., Lee, S. C., Lim, Y. C., Pervaiz, S., Goh, B. C., & Wong, A. L. A. (2020). Targeting cell metabolism as cancer therapy. Antioxidants & Redox Signaling, 32(5), 285–308.
      Pajai, S., John, J. E., & Tripathi, S. C. (2023). Targeting immune‐onco‐metabolism for precision cancer therapy. Frontiers in Oncology, 13, 1124715.
      Park, H., Ohshima, K., Nojima, S., Tahara, S., Kurashige, M., Hori, Y., Okuzaki, D., Wada, N., Ikeda, J., & Morii, E. (2018). Adenylosuccinate lyase enhances aggressiveness of endometrial cancer by increasing killer cell lectin‐like receptor C3 expression by fumarate. Laboratory Investigation, 98(4), 449–461.
      Park, J. H., Pyun, W. Y., & Park, H. W. (2020). Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells, 9(10), 2308.
      Patil, K., Khan, F. B., Akhtar, S., Ahmad, A., & Uddin, S. (2021). The plasticity of pancreatic cancer stem cells: Implications in therapeutic resistance. Cancer and Metastasis Reviews, 40(3), 691–720.
      Prieto‐Vila, M., Takahashi, R., Usuba, W., Kohama, I., & Ochiya, T. (2017). Drug resistance driven by cancer stem cells and their niche. International Journal of Molecular Sciences, 18(12), 2574.
      Ray, S. P., Deaton, M. K., Capodagli, G. C., Calkins, L. A. F., Sawle, L., Ghosh, K., Patterson, D., & Pegan, S. D. (2012). Structural and biochemical characterization of human adenylosuccinate lyase (ADSL) and the R303C ADSL deficiency‐associated mutation. Biochemistry, 51(33), 6701–6713.
      Rezayatmand, H., Razmkhah, M., & Razeghian‐Jahromi, I. (2022). Drug resistance in cancer therapy: the Pandora's box of cancer stem cells. Stem Cell Research & Therapy, 13(1), 181.
      Safa, A. R. (2022). Drug and apoptosis resistance in cancer stem cells (CSCs): A puzzle with many pieces. Cancer Drug Resistance, 5(4), 850–872.
      Saiki, Y., Hirota, S., & Horii, A. (2020). Attempts to remodel the pathways of gemcitabine metabolism: Recent approaches to overcoming tumours with acquired chemoresistance. Cancer Drug Resistance, 3(4), 819–831.
      Sancho, P., Burgos‐Ramos, E., Tavera, A., Bou Kheir, T., Jagust, P., Schoenhals, M., Barneda, D., Sellers, K., Campos‐Olivas, R., Graña, O., Viera, C. R., Yuneva, M., Sainz, B., & Heeschen, C. (2015). MYC/PGC‐1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabolism, 22(4), 590–605.
      Schiliro, C., & Firestein, B. L. (2021). Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells, 10(5), 1056.
      Stoffel, E. M., Brand, R. E., & Goggins, M. (2023). Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention. Gastroenterology, 164, 752–765.
      Taha‐Mehlitz, S., Bianco, G., Coto‐Llerena, M., Kancherla, V., Bantug, G. R., Gallon, J., Ercan, C., Panebianco, F., Eppenberger‐Castori, S., von Strauss, M., Staubli, S., Bolli, M., Peterli, R., Matter, M. S., Terracciano, L. M., von Flüe, M., Ng, C. K. Y., Soysal, S. D., Kollmar, O., & Piscuoglio, S. (2021). Adenylosuccinate lyase is oncogenic in colorectal cancer by causing mitochondrial dysfunction and independent activation of NRF2 and mTOR‐MYC‐axis. Theranostics, 11(9), 4011–4029.
      Truong, E., Pandol, S., & Jeon, C. (2022). Uniting epidemiology and experimental models: Pancreatic steatosis and pancreatic cancer. EBioMedicine, 79, 103996.
      De Vitto, H., Arachchige, D., Richardson, B., & French, J. (2021). The intersection of purine and mitochondrial metabolism in cancer. Cells, 10(10), 2603.
      Wang, L., QIAN, L., LI, X., & YAN, J. (2014). MicroRNA‐195 inhibits colorectal cancer cell proliferation, colony‐formation and invasion through targeting CARMA3. Molecular Medicine Reports, 10(1), 473–478.
      Yang, J., Xu, J., Zhang, B., Tan, Z., Meng, Q., Hua, J., Liu, J., Wang, W., Shi, S., Yu, X., & Liang, C. (2021). Ferroptosis: At the crossroad of gemcitabine resistance and tumorigenesis in pancreatic cancer. International Journal of Molecular Sciences, 22(20), 10944.
      Yin, J., Ren, W., Huang, X., Deng, J., Li, T., & Yin, Y. (2018). Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology, 9, 1697.
      Zahra, M. H., Nawara, H. M., Hassan, G., Afify, S. M., Seno, A., & Seno, M. (2022). Cancer stem cells contribute to drug resistance in multiple different ways. Advances in Experimental Medicine and Biology, 1393, 125–139.
      Zhang, S., & Lin, X. (2019). CARMA3: Scaffold protein involved in NF‐κB signaling. Frontiers in Immunology, 10, 176.
      Zhang, S., Zhang, C., Liu, W., Zheng, W., Zhang, Y., Wang, S., Huang, D., Liu, X., & Bai, Z. (2015). MicroRNA‐24 upregulation inhibits proliferation, metastasis and induces apoptosis in bladder cancer cells by targeting CARMA3. International Journal of Oncology, 47(4), 1351–1360.
      Zhao, H., Xu, Y., & Shang, H. (2022). Ferroptosis: A new promising target for ovarian cancer therapy. International Journal of Medical Sciences, 19(13), 1847–1855.
      Zhou, W., Yao, Y., Scott, A. J., Wilder‐Romans, K., Dresser, J. J., Werner, C. K., Sun, H., Pratt, D., Sajjakulnukit, P., Zhao, S. G., Davis, M., Nelson, B. S., Halbrook, C. J., Zhang, L., Gatto, F., Umemura, Y., Walker, A. K., Kachman, M., Sarkaria, J. N., … Wahl, D. R. (2020). Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature Communications, 11(1), 3811.
      Zhuang, L., Yao, Y., Peng, L., Cui, F., Chen, C., Zhang, Y., Sun, L., Yu, Q., & Lin, K. (2022). Silencing GS homeobox 2 alleviates gemcitabine resistance in pancreatic cancer cells by activating SHH/GLI1 signaling pathway. Digestive Diseases and Sciences, 67(8), 3773–3782.
    • Grant Information:
      TMU111-AE1-B11 Taipei Medical University; MOST 112-2314-B-038 -053 Ministry of Science and Technology, Taiwan
    • Contributed Indexing:
      Keywords: Carma3; Nrf2; adenylosuccinate lyase (ADSL); ferroptosis; gemcitabine resistance; pancreatic cancer
    • Accession Number:
      0 (Gemcitabine)
      0W860991D6 (Deoxycytidine)
      0 (NF-E2-Related Factor 2)
      0 (NFE2L2 protein, human)
      EC 4.3.2.2 (Adenylosuccinate Lyase)
      0 (Antimetabolites, Antineoplastic)
    • Publication Date:
      Date Created: 20240821 Date Completed: 20241217 Latest Revision: 20241217
    • Publication Date:
      20241217
    • Accession Number:
      10.1002/jcp.31416
    • Accession Number:
      39164986