GO/Cu Nanosheet-Integrated Hydrogel Platform as a Bioactive and Biocompatible Scaffold for Enhanced Calvarial Bone Regeneration.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: DOVE Medical Press Country of Publication: New Zealand NLM ID: 101263847 Publication Model: eCollection Cited Medium: Internet ISSN: 1178-2013 (Electronic) Linking ISSN: 11769114 NLM ISO Abbreviation: Int J Nanomedicine Subsets: MEDLINE
    • Publication Information:
      Original Publication: Auckland : DOVE Medical Press,
    • Subject Terms:
    • Abstract:
      Purpose: The treatment of craniofacial bone defects caused by trauma, tumors, and infectious and degenerative diseases is a significant issue in current clinical practice. Following the rapid development of bone tissue engineering (BTE) in the last decade, bioactive scaffolds coupled with multifunctional properties are in high demand with regard to effective therapy for bone defects. Herein, an innovative bone scaffold consisting of GO/Cu nanoderivatives and GelMA-based organic-inorganic hybrids was reported for repairing full-thickness calvarial bone defect.
      Methods: In this study, motivated by the versatile biological functions of nanomaterials and synthetic hydrogels, copper nanoparticle (CuNP)-decorated graphene oxide (GO) nanosheets (GO/Cu) were combined with methacrylated gelatin (GelMA)-based organic-inorganic hybrids to construct porous bone scaffolds that mimic the extracellular matrix (ECM) of bone tissues by photocrosslinking. The material characterizations, in vitro cytocompatibility, macrophage polarization and osteogenesis of the biohybrid hydrogel scaffolds were investigated, and two different animal models (BALB/c mice and SD rats) were established to further confirm the in vivo neovascularization, macrophage recruitment, biocompatibility, biosafety and bone regenerative potential.
      Results: We found that GO/Cu-functionalized GelMA/β-TCP hydrogel scaffolds exhibited evidently promoted osteogenic activities, M2 type macrophage polarization, increased secretion of anti-inflammatory factors and excellent cytocompatibility, with favorable surface characteristics and sustainable release of Cu 2+ . Additionally, improved neovascularization, macrophage recruitment and tissue integration were found in mice implanted with the bioactive hydrogels. More importantly, the observations of microCT reconstruction and histological analysis in a calvarial bone defect model in rats treated with GO/Cu-incorporated hydrogel scaffolds demonstrated significantly increased bone morphometric values and newly formed bone tissues, indicating accelerated bone healing.
      Conclusion: Taken together, this BTE-based bone repair strategy provides a promising and feasible method for constructing multifunctional GO/Cu nanocomposite-incorporated biohybrid hydrogel scaffolds with facilitated osteogenesis, angiogenesis and immunoregulation in one system, with the optimization of material properties and biosafety, it thereby demonstrates great application potential for correcting craniofacial bone defects in future clinical scenarios.
      Competing Interests: The authors report no conflicts of interest in this work.
      (© 2024 Yang et al.)
    • References:
      Bioact Mater. 2022 Feb 28;16:271-284. (PMID: 35386320)
      Biomater Adv. 2022 Feb;133:112641. (PMID: 35034819)
      Acta Biomater. 2020 Sep 1;113:23-41. (PMID: 32565369)
      Bioact Mater. 2021 Mar 09;6(10):3136-3149. (PMID: 33778194)
      Adv Healthc Mater. 2020 Mar;9(5):e1901495. (PMID: 31976623)
      ACS Appl Bio Mater. 2023 Feb 20;6(2):578-590. (PMID: 36655342)
      Mater Today Bio. 2022 May 30;15:100307. (PMID: 35706502)
      J Mater Chem B. 2022 Nov 23;10(45):9369-9388. (PMID: 36378123)
      J Craniomaxillofac Surg. 2022 Dec;50(12):863-872. (PMID: 36639262)
      J Orthop Translat. 2022 Oct 14;38:1-11. (PMID: 36313975)
      Bioact Mater. 2021 Jul 06;8:267-295. (PMID: 34541401)
      Bioact Mater. 2022 Jul 21;25:594-614. (PMID: 37056253)
      Plast Reconstr Surg. 2017 May;139(5):1141-1150. (PMID: 28445366)
      Adv Healthc Mater. 2022 Mar;11(6):e2101911. (PMID: 34865322)
      J Mater Chem B. 2022 Jul 20;10(28):5375-5387. (PMID: 35775992)
      Bioact Mater. 2023 Feb 24;26:88-101. (PMID: 36875054)
      Biomater Res. 2023 Sep 15;27(1):86. (PMID: 37715230)
      Bone. 2022 Jun;159:116389. (PMID: 35301163)
      Carbohydr Polym. 2022 Aug 15;290:119469. (PMID: 35550764)
      Int J Nanomedicine. 2020 Oct 06;15:7523-7551. (PMID: 33116486)
      Bioact Mater. 2020 Nov 27;6(6):1639-1652. (PMID: 33313444)
      Biomaterials. 2015 Dec;73:254-71. (PMID: 26414409)
      J Nanobiotechnology. 2022 May 7;20(1):221. (PMID: 35526013)
      ACS Omega. 2022 Sep 28;7(40):35387-35445. (PMID: 36249372)
      Mater Sci Eng C Mater Biol Appl. 2020 May;110:110670. (PMID: 32204098)
      ACS Biomater Sci Eng. 2019 Oct 14;5(10):5368-5383. (PMID: 33464078)
      Biomaterials. 2021 Jan;268:120603. (PMID: 33378735)
      Biomaterials. 2021 Oct;277:121082. (PMID: 34464823)
      Biomaterials. 2018 Oct;180:143-162. (PMID: 30036727)
      J Lipid Res. 2022 Oct;63(10):100276. (PMID: 36089003)
      Acta Biomater. 2018 Oct 1;79:265-275. (PMID: 30125670)
      Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2206684119. (PMID: 36191194)
      Adv Healthc Mater. 2023 Oct;12(27):e2301151. (PMID: 37421228)
      J Colloid Interface Sci. 2017 Sep 1;501:330-340. (PMID: 28463764)
      ACS Biomater Sci Eng. 2022 Jul 11;8(7):2849-2857. (PMID: 35759514)
      Tissue Eng Regen Med. 2019 Jun 17;16(4):415-429. (PMID: 31413945)
      Adv Mater. 2022 Feb;34(8):e2106390. (PMID: 34783098)
      J Mater Chem B. 2022 Nov 16;10(44):9040-9053. (PMID: 36317564)
      Adv Healthc Mater. 2020 Jan;9(1):e1901239. (PMID: 31814318)
      Adv Healthc Mater. 2023 Apr;12(9):e2202766. (PMID: 36512599)
      Mater Today Bio. 2023 Jul 30;22:100753. (PMID: 37593216)
      Adv Healthc Mater. 2022 Jul;11(13):e2200298. (PMID: 35388979)
      Adv Healthc Mater. 2015 Aug 5;4(11):1722-32. (PMID: 26033847)
      Autophagy. 2023 Aug;19(8):2175-2195. (PMID: 37055935)
      RSC Adv. 2021 Apr 21;11(25):14996-15009. (PMID: 35424032)
      Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4669-74. (PMID: 20207947)
      Int J Biol Macromol. 2016 Dec;93(Pt B):1366-1381. (PMID: 27106590)
      ACS Appl Mater Interfaces. 2011 Jul;3(7):2607-15. (PMID: 21650218)
      Bioact Mater. 2022 Sep 23;22:1-17. (PMID: 36203961)
      Biomaterials. 2023 Jan;292:121940. (PMID: 36493714)
      Small. 2023 Sep;19(38):e2303636. (PMID: 37217971)
      Bioact Mater. 2022 Aug 17;21:97-109. (PMID: 36093326)
      Acta Biomater. 2017 May;54:128-137. (PMID: 28285076)
      J Mater Chem B. 2016 Feb 14;4(6):1070-1080. (PMID: 32262999)
      Biomater Adv. 2022 Aug;139:213032. (PMID: 35882123)
      Bioact Mater. 2020 Sep 25;6(3):757-769. (PMID: 33024897)
      Stem Cells Int. 2021 Apr 23;2021:6697969. (PMID: 33981343)
      Acta Biomater. 2018 Apr 15;71:96-107. (PMID: 29549051)
      Int J Nanomedicine. 2020 Oct 27;15:8231-8247. (PMID: 33149572)
      ACS Infect Dis. 2022 Mar 11;8(3):499-515. (PMID: 35188739)
      Bone Res. 2016 Sep 20;4:16027. (PMID: 27672479)
      Exploration (Beijing). 2021 Oct 30;1(2):20210011. (PMID: 37323213)
      Carbohydr Polym. 2022 May 1;283:119142. (PMID: 35153015)
      Adv Mater. 2017 Dec;29(46):. (PMID: 29068546)
    • Contributed Indexing:
      Keywords: bone regeneration; bone scaffolds; craniofacial bone defects; hybrid hydrogel; nanomaterials
    • Accession Number:
      789U1901C5 (Copper)
      7782-42-5 (Graphite)
      0 (Hydrogels)
      0 (graphene oxide)
      0 (Biocompatible Materials)
      9000-70-8 (Gelatin)
    • Publication Date:
      Date Created: 20240820 Date Completed: 20240820 Latest Revision: 20240821
    • Publication Date:
      20240821
    • Accession Number:
      PMC11330858
    • Accession Number:
      10.2147/IJN.S467886
    • Accession Number:
      39161358