Menu
×
Edisto Island Library
11 a.m. - 4 p.m.
Phone: (843) 869-2355
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Edisto Island Library
11 a.m. - 4 p.m.
Phone: (843) 869-2355
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Versatile plant genome engineering using anti-CRISPR-Cas12a systems.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): He Y;He Y;He Y; Liu S; Liu S; Liu S; Chen L; Chen L; Chen L; Pu D; Pu D; Zhong Z; Zhong Z; Xu T; Xu T; Ren Q; Ren Q; Dong C; Dong C; Wang Y; Wang Y; Wang D; Wang D; Zheng X; Zheng X; Guo F; Guo F; Guo F; Zhang T; Zhang T; Zhang T; Qi Y; Qi Y; Qi Y; Zhang Y; Zhang Y; Zhang Y
- Source:
Science China. Life sciences [Sci China Life Sci] 2024 Dec; Vol. 67 (12), pp. 2730-2745. Date of Electronic Publication: 2024 Aug 15.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Science China Press, co-published with Springer Country of Publication: China NLM ID: 101529880 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-1889 (Electronic) Linking ISSN: 16747305 NLM ISO Abbreviation: Sci China Life Sci Subsets: MEDLINE
- Publication Information: Original Publication: Beijing : Science China Press, co-published with Springer
- Subject Terms: CRISPR-Cas Systems* ; Gene Editing*/methods ; Genome, Plant* ; Plants, Genetically Modified*/genetics ; Oryza*/genetics ; CRISPR-Associated Proteins*/genetics ; CRISPR-Associated Proteins*/metabolism; Protoplasts/metabolism ; Escherichia coli/genetics ; Escherichia coli/metabolism ; Genetic Engineering/methods ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Endodeoxyribonucleases
- Abstract: CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.
Competing Interests: Compliance and ethics. The authors declare no competing interests.
(© 2024. Science China Press.) - References: Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44, W16–W21. (PMID: 27141966498793110.1093/nar/gkw387)
Asad, M., Liu, D., Li, J., Chen, J., and Yang, G. (2022). Development of CRISPR/Cas9-mediated gene-drive construct targeting the phenotypic gene in Plutella xylostella. Front Physiol 13, 938621. (PMID: 35845988927730810.3389/fphys.2022.938621)
Bae, S., Park, J., and Kim, J.S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475. (PMID: 24463181401670710.1093/bioinformatics/btu048)
Basgall, E.M., Goetting, S.C., Goeckel, M.E., Giersch, R.M., Roggenkamp, E., Schrock, M.N., Halloran, M., and Finnigan, G.C. (2018). Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164, 464–474. (PMID: 29488867598213510.1099/mic.0.000635)
Bertelli, C., Laird, M.R., Williams, K.P., Lau, B.Y., Hoad, G., Winsor, G.L., and Brinkman, F.S. (2017). IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45, W30–W35. (PMID: 28472413557025710.1093/nar/gkx343)
Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., and Davidson, A.R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432. (PMID: 2324213810.1038/nature11723)
Bubeck, F., Hoffmann, M.D., Harteveld, Z., Aschenbrenner, S., Bietz, A., Waldhauer, M.C., Börner, K., Fakhiri, J., Schmelas, C., Dietz, L., et al. (2018). Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat Methods 15, 924–927. (PMID: 3037736210.1038/s41592-018-0178-9)
Calvache, C., Vazquez-Vilar, M., Selma, S., Uranga, M., Fernández-del-Carmen, A., Daròs, J.A., and Orzáez, D. (2022). Strong and tunable anti-CRISPR/Cas activities in plants. Plant Biotechnol J 20, 399–408. (PMID: 3463268710.1111/pbi.13723)
Campa, C.C., Weisbach, N.R., Santinha, A.J., Incarnato, D., and Platt, R.J. (2019). Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16, 887–893. (PMID: 3140638310.1038/s41592-019-0508-6)
D’Amato, R., Taxiarchi, C., Galardini, M., Trusso, A., Minuz, R.L., Grilli, S., Somerville, A.G.T., Shittu, D., Khalil, A.S., Galizi, R., et al. (2024). Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages. Nat Commun 15, 952. (PMID: 382969811083055510.1038/s41467-024-44907-x)
Decaestecker, W., Buono, R.A., Pfeiffer, M.L., Vangheluwe, N., Jourquin, J., Karimi, M., Van Isterdael, G., Beeckman, T., Nowack, M.K., and Jacobs, T.B. (2019). CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887. (PMID: 31562216692501210.1105/tpc.19.00454)
Dong, D., Guo, M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., and Huang, Z. (2017). Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature 546, 436–439. (PMID: 2844806610.1038/nature22377)
Dong, L., Guan, X., Li, N., Zhang, F., Zhu, Y., Ren, K., Yu, L., Zhou, F., Han, Z., Gao, N., et al. (2019). An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol 26, 308–314. (PMID: 3093652610.1038/s41594-019-0206-1)
Fan, T., Cheng, Y., Wu, Y., Liu, S., Tang, X., He, Y., Liao, S., Zheng, X., Zhang, T., Qi, Y., et al. (2024). High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants. Nat Commun 15, 5103. (PMID: 388770351117882510.1038/s41467-024-49473-w)
Forsberg, K.J., Bhatt, I.V., Schmidtke, D.T., Javanmardi, K., Dillard, K.E., Stoddard, B. L., Finkelstein, I.J., Kaiser, B.K., and Malik, H.S. (2019). Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife 8, e46540. (PMID: 31502535673986710.7554/eLife.46540)
Forsberg, K.J., Schmidtke, D.T., Werther, R., Uribe, R.V., Hausman, D., Sommer, M.O. A., Stoddard, B.L., Kaiser, B.K., Malik, H.S., and Meeske, A.J. (2021). The novel anti-CRISPR AcrIIA22 relieves DNA torsion in target plasmids and impairs SpyCas9 activity. PLoS Biol 19, e3001428. (PMID: 34644300854543210.1371/journal.pbio.3001428)
Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822–826. (PMID: 23792628377302310.1038/nbt.2623)
Garcia, B., Lee, J., Edraki, A., Hidalgo-Reyes, Y., Erwood, S., Mir, A., Trost, C.N., Seroussi, U., Stanley, S.Y., Cohn, R.D., et al. (2019). Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep 29, 1739–1746.e5. (PMID: 31722192691023910.1016/j.celrep.2019.10.017)
Grant, J.R., Enns, E., Marinier, E., Mandal, A., Herman, E.K., Chen, C., Graham, M., Van Domselaar, G., and Stothard, P. (2023). Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51, W484–W492. (PMID: 371400371032006310.1093/nar/gkad326)
Griffith, A.L., Zheng, F., McGee, A.V., Miller, N.W., Szegletes, Z.M., Reint, G., Gademann, F., Nwolah, I., Hegde, M., Liu, Y.V., et al. (2023). Optimization of Cas12a for multiplexed genome-scale transcriptional activation. Cell Genomics 3, 100387. (PMID: 377191441050467310.1016/j.xgen.2023.100387)
Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC BioInf 8, 172. (PMID: 10.1186/1471-2105-8-172)
Han, Y., Liu, G., Wu, Y., Bao, Y., Zhang, Y., and Zhang, T. (2024). CrisprStitch: fast evaluation of the efficiency of CRISPR editing systems. Plant Commun 5, 100783. (PMID: 3814616410.1016/j.xplc.2023.100783)
Harrington, L.B., Doxzen, K.W., Ma, E., Liu, J.J., Knott, G.J., Edraki, A., Garcia, B., Amrani, N., Chen, J.S., Cofsky, J.C., et al. (2017). A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170, 1224–1233.e15. (PMID: 28844692587592110.1016/j.cell.2017.07.037)
He, Y., Han, Y., Ma, Y., Liu, S., Fan, T., Liang, Y., Tang, X., Zheng, X., Wu, Y., Zhang, T., et al. (2024). Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. Plant Biotechnol J pbi.14363.
Hirosawa, M., Fujita, Y., and Saito, H. (2019). Cell-type-specific CRISPR activation with microRNA-responsive AcrllA4 switch. ACS Synth Biol 8, 1575–1582. (PMID: 3126830310.1021/acssynbio.9b00073)
Hoffmann, M.D., Aschenbrenner, S., Grosse, S., Rapti, K., Domenger, C., Fakhiri, J., Mastel, M., Börner, K., Eils, R., Grimm, D., et al. (2019). Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 47, e75. (PMID: 30982889664835010.1093/nar/gkz271)
Huang, T.K., Armstrong, B., Schindele, P., and Puchta, H. (2021). Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. Plant Biotechnol J 19, 1314–1324. (PMID: 33511745831312310.1111/pbi.13546)
Hui, F., Tang, X., Li, B., Alariqi, M., Xu, Z., Meng, Q., Hu, Y., Wang, G., Zhang, Y., Zhang, X., et al. (2024). Robust CRISPR/Mb2Cas12a genome editing tools in cotton plants. iMeta 3, e209. (PMID: 388989891118316010.1002/imt2.209)
Hwang, S., and Maxwell, K.L. (2023). Diverse mechanisms of CRISPR-Cas9 inhibition by type II anti-CRISPR proteins. J Mol Biol 435, 168041. (PMID: 3689393810.1016/j.jmb.2023.168041)
Hynes, A.P., Rousseau, G.M., Lemay, M.L., Horvath, P., Romero, D.A., Fremaux, C., and Moineau, S. (2017). An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol 2, 1374–1380. (PMID: 2878503210.1038/s41564-017-0004-7)
Jeong, J.S., Kim, Y.S., Redillas, M.C.F.R., Jang, G., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C., and Kim, J.K. (2013). OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11, 101–114. (PMID: 2309491010.1111/pbi.12011)
Jia, N., and Patel, D.J. (2021). Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol 22, 563–579. (PMID: 3408901310.1038/s41580-021-00371-9)
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. (PMID: 22745249628614810.1126/science.1225829)
Kaminski, R., Bella, R., Yin, C., Otte, J., Ferrante, P., Gendelman, H.E., Li, H., Booze, R., Gordon, J., Hu, W., et al. (2016). Erratum: excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23, 696. (PMID: 2748802310.1038/gt.2016.45)
Kawasaki, S., Ono, H., Hirosawa, M., Kuwabara, T., Sumi, S., Lee, S., Woltjen, K., and Saito, H. (2023). Programmable mammalian translational modulators by CRISPR-associated proteins. Nat Commun 14, 2243. (PMID: 370764901011582610.1038/s41467-023-37540-7)
Kempton, H.R., Goudy, L.E., Love, K.S., and Qi, L.S. (2020). Multiple input sensing and signal integration using a split Cas12a system. Mol Cell 78, 184–191.e3. (PMID: 3202783910.1016/j.molcel.2020.01.016)
Knott, G.J., Cress, B.F., Liu, J.J., Thornton, B.W., Lew, R.J., Al-Shayeb, B., Rosenberg, D.J., Hammel, M., Adler, B.A., Lobba, M.J., et al. (2019). Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 8, e49110. (PMID: 31397669671170810.7554/eLife.49110)
Knott, G.J., Thornton, B.W., Lobba, M.J., Liu, J.J., Al-Shayeb, B., Watters, K.E., and Doudna, J.A. (2019b). Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat Struct Mol Biol 26, 315–321. (PMID: 30936531644918910.1038/s41594-019-0208-z)
Kunin, V., Sorek, R., and Hugenholtz, P. (2007). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8, R61. (PMID: 17442114189600510.1186/gb-2007-8-4-r61)
Lee, J., Mir, A., Edraki, A., Garcia, B., Amrani, N., Lou, H.E., Gainetdinov, I., Pawluk, A., Ibraheim, R., Gao, X.D., et al. (2018). Potent Cas9 Inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. mBio 9, e02321–18. (PMID: 30514786628220510.1128/mBio.02321-18)
Lee, J., Mou, H., Ibraheim, R., Liang, S.Q., Liu, P., Xue, W., and Sontheimer, E.J. (2019a). Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431. (PMID: 31439808679514010.1261/rna.071704.119)
Lee, K., Zhang, Y., Kleinstiver, B.P., Guo, J.A., Aryee, M.J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C.J., Joung, J.K., et al. (2019b). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17, 362–372. (PMID: 2997272210.1111/pbi.12982)
Li, G., Zhang, Y., Dailey, M., and Qi, Y. (2023). Hs1Cas12a and Ev1Cas12a confer efficient genome editing in plants. Front Genome Ed 5, 1251903. (PMID: 379012821060264810.3389/fgeed.2023.1251903)
Li, S., Zhang, Y., Xia, L., and Qi, Y. (2020). CRISPR-Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnol J 18, 1351–1353. (PMID: 3173025210.1111/pbi.13295)
Liang, D., Liu, Y., Li, C., Wen, Q., Xu, J., Geng, L., Liu, C., Jin, H., Gao, Y., Zhong, H., et al. (2023). CRISPR/LbCas12a-mediated genome editing in soybean. Methods Mol Biol 2653, 39–52. (PMID: 3699561810.1007/978-1-0716-3131-7_3)
Liang, M., Sui, T., Liu, Z., Chen, M., Liu, H., Shan, H., Lai, L., and Li, Z. (2020). AcrIIA5 suppresses base editors and reduces their off-target effects. Cells 9, 1786. (PMID: 32727031746390110.3390/cells9081786)
Liu, H., Zhu, Y., Lu, Z., and Huang, Z. (2021). Structural basis of Staphylococcus aureus Cas9 inhibition by AcrIIA14. Nucleic Acids Res 49, 6587–6595. (PMID: 34107040821628610.1093/nar/gkab487)
Liu, L., Yin, M., Wang, M., and Wang, Y. (2019). Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol Cell 73, 611–620.e3. (PMID: 3060646610.1016/j.molcel.2018.11.011)
Liu, S., Sretenovic, S., Fan, T., Cheng, Y., Li, G., Qi, A., Tang, X., Xu, Y., Guo, W., Zhong, Z., et al. (2022). Hypercompact CRISPR–Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant Commun 3, 100453. (PMID: 36127876970020110.1016/j.xplc.2022.100453)
Liu, Y., Yuan, G., Hyden, B., Tuskan, G.A., Abraham, P.E., and Yang, X. (2023). Expanding the application of anti-CRISPR proteins in plants for tunable genome editing. Plant Physiol 192, 60–64. (PMID: 367570141015267510.1093/plphys/kiad076)
Lowder, L.G., Zhang, D., Baltes, N.J., Paul Iii, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F., Zhang, Y., and Qi, Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169, 971–985. (PMID: 26297141458745310.1104/pp.15.00636)
Mahendra, C., Christie, K.A., Osuna, B.A., Pinilla-Redondo, R., Kleinstiver, B.P., and Bondy-Denomy, J. (2020). Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 5, 620–629. (PMID: 32218510719498110.1038/s41564-020-0692-2)
Makarova, K.S., Koonin, E.V. (2015). Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311, 47–75. (PMID: 25981466590176210.1007/978-1-4939-2687-9_4)
Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al. (2020). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67–83. (PMID: 3185771510.1038/s41579-019-0299-x)
Marino, N.D. (2023). Phage against the machine: discovery and mechanism of type V anti-CRISPRs. J Mol Biol 435, 168054. (PMID: 3693480710.1016/j.jmb.2023.168054)
Marino, N.D., Zhang, J.Y., Borges, A.L., Sousa, A.A., Leon, L.M., Rauch, B.J., Walton, R.T., Berry, J.D., Joung, J.K., Kleinstiver, B.P., et al. (2018). Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240–242. (PMID: 30190308652011210.1126/science.aau5174)
Mathony, J., Harteveld, Z., Schmelas, C., Upmeier zu Belzen, J., Aschenbrenner, S., Sun, W., Hoffmann, M.D., Stengl, C., Scheck, A., Georgeon, S., et al. (2020). Computational design of anti-CRISPR proteins with improved inhibition potency. Nat Chem Biol 16, 725–730. (PMID: 3228460210.1038/s41589-020-0518-9)
Meeske, A.J., Jia, N., Cassel, A.K., Kozlova, A., Liao, J., Wiedmann, M., Patel, D.J., and Marraffini, L.A. (2020). A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science 369, 54–59. (PMID: 32467331797568910.1126/science.abb6151)
Miyamoto, H., Kobayashi, H., Kishima, N., Yamazaki, K., Hamamichi, S., Uno, N., Abe, S., Hiramuki, Y., Kazuki, K., Tomizuka, K., et al. (2024). Rapid human genomic DNA cloning into mouse artificial chromosome via direct chromosome transfer from human iPSC and CRISPR/Cas9-mediated translocation. Nucleic Acids Res 52, 1498–1511. (PMID: 381808131085380110.1093/nar/gkad1218)
Nakamura, M., Srinivasan, P., Chavez, M., Carter, M.A., Dominguez, A.A., La Russa, M., Lau, M.B., Abbott, T.R., Xu, X., Zhao, D., et al. (2019). Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun 10, 194. (PMID: 30643127633159710.1038/s41467-018-08158-x)
Osuna, B.A., Karambelkar, S., Mahendra, C., Christie, K.A., Garcia, B., Davidson, A.R., Kleinstiver, B.P., Kilcher, S., and Bondy-Denomy, J. (2020). Listeria phages induce Cas9 degradation to protect lysogenic genomes. Cell Host Microbe 28, 31–40.e9. (PMID: 32325050735159810.1016/j.chom.2020.04.001)
Pawluk, A., Amrani, N., Zhang, Y., Garcia, B., Hidalgo-Reyes, Y., Lee, J., Edraki, A., Shah, M., Sontheimer, E.J., Maxwell, K.L., et al. (2016a). Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838.e9. (PMID: 27984730575784110.1016/j.cell.2016.11.017)
Pawluk, A., Staals, R.H.J., Taylor, C., Watson, B.N.J., Saha, S., Fineran, P.C., Maxwell, K.L., and Davidson, A.R. (2016b). Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 1, 16085. (PMID: 2757310810.1038/nmicrobiol.2016.85)
Peng, R., Li, Z., Xu, Y., He, S., Peng, Q., Wu, L., Wu, Y., Qi, J., Wang, P., Shi, Y., et al. (2019). Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. Proc Natl Acad Sci USA 116, 18928–18936. (PMID: 31467167675459110.1073/pnas.1909400116)
Pinilla-Redondo, R., Shehreen, S., Marino, N.D., Fagerlund, R.D., Brown, C.M., Sørensen, S.J., Fineran, P.C., and Bondy-Denomy, J. (2020). Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat Commun 11, 5652. (PMID: 33159058764864710.1038/s41467-020-19415-3)
Rauch, B.J., Silvis, M.R., Hultquist, J.F., Waters, C.S., McGregor, M.J., Krogan, N.J., and Bondy-Denomy, J. (2017). Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168, 150–158.e10. (PMID: 2804184910.1016/j.cell.2016.12.009)
Ren, C., Gathunga, E.K., Li, X., Li, H., Kong, J., Dai, Z., and Liang, Z. (2023). Efficient genome editing in grapevine using CRISPR/LbCas12a system. Mol Horticulture 3, 21. (PMID: 10.1186/s43897-023-00069-w)
Ren, Q., Sretenovic, S., Liu, G., Zhong, Z., Wang, J., Huang, L., Tang, X., Guo, Y., Liu, L., Wu, Y., et al. (2021a). Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol J 19, 2052–2068. (PMID: 34042262848623610.1111/pbi.13635)
Ren, Q., Sretenovic, S., Liu, S., Tang, X., Huang, L., He, Y., Liu, L., Guo, Y., Zhong, Z., Liu, G., et al. (2021b). PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat Plants 7, 25–33. (PMID: 3339815810.1038/s41477-020-00827-4)
Sanz Juste, S., Okamoto, E.M., Nguyen, C., Feng, X., and López Del Amo, V. (2023). Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nat Commun 14, 6388. (PMID: 378214971056771710.1038/s41467-023-42183-9)
Schindele, P., Merker, L., Schreiber, T., Prange, A., Tissier, A., and Puchta, H. (2023). Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron-containing version of ttLbCas12a. Plant Biotechnol J 21, 457–459. (PMID: 3638293610.1111/pbi.13964)
Shin, J., Jiang, F., Liu, J.J., Bray, N.L., Rauch, B.J., Baik, S.H., Nogales, E., Bondy-Denomy, J., Corn, J.E., and Doudna, J.A. (2017). Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 3, e1701620. (PMID: 28706995550763610.1126/sciadv.1701620)
Song, G., Tian, C., Li, J., Zhang, F., Peng, Y., Gao, X., and Tian, Y. (2023). Rapid characterization of anti-CRISPR proteins and optogenetically engineered variants using a versatile plasmid interference system. Nucleic Acids Res 51, 12381–12396. (PMID: 379308301071142510.1093/nar/gkad995)
Song, G., Zhang, F., Tian, C., Gao, X., Zhu, X., Fan, D., and Tian, Y. (2022). Discovery of potent and versatile CRISPR–Cas9 inhibitors engineered for chemically controllable genome editing. Nucleic Acids Res 50, 2836–2853. (PMID: 35188577893464510.1093/nar/gkac099)
Song, G., Zhang, F., Zhang, X., Gao, X., Zhu, X., Fan, D., and Tian, Y. (2019). AcrIIA5 inhibits a broad range of Cas9 orthologs by preventing DNA target cleavage. Cell Rep 29, 2579–2589.e4. (PMID: 3177502910.1016/j.celrep.2019.10.078)
Starai, V.J., and Escalante-Semerena, J.C. (2004). Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340, 1005–1012. (PMID: 1523696310.1016/j.jmb.2004.05.010)
Stewart, C.N., Jr., and Via, L.E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14, 748–750. (PMID: 8512694)
Sun, W., Yang, J., Cheng, Z., Amrani, N., Liu, C., Wang, K., Ibraheim, R., Edraki, A., Huang, X., Wang, M., et al. (2019). Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol Cell 76, 938–952.e5. (PMID: 31668930693404510.1016/j.molcel.2019.09.025)
Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., et al. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19, 84. (PMID: 29973285603118810.1186/s13059-018-1458-5)
Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., et al. (2017). Correction: a CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3, 17103. (PMID: 2862813110.1038/nplants.2017.103)
Tang, X., Ren, Q., Yan, X., Zhang, R., Liu, L., Han, Q., Zheng, X., Qi, Y., Song, H., and Zhang, Y. (2024). Boosting genome editing in plants with single transcript unit surrogate reporter systems. Plant Commun 5, 100921. (PMID: 386164911121163410.1016/j.xplc.2024.100921)
Tang, X., Ren, Q., Yang, L., Bao, Y., Zhong, Z., He, Y., Liu, S., Qi, C., Liu, B., Wang, Y., et al. (2019). Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol J 17, 1431–1445. (PMID: 30582653657610110.1111/pbi.13068)
Tang, X., and Zhang, Y. (2023). Beyond knockouts: fine-tuning regulation of gene expression in plants with CRISPR-Cas-based promoter editing. New Phytol 239, 868–874. (PMID: 3728266810.1111/nph.19020)
Tang, X., Zheng, X., Qi, Y., Zhang, D., Cheng, Y., Tang, A., Voytas, D.F., and Zhang, Y. (2016). A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9, 1088–1091. (PMID: 2721238910.1016/j.molp.2016.05.001)
Thavalingam, A., Cheng, Z., Garcia, B., Huang, X., Shah, M., Sun, W., Wang, M., Harrington, L., Hwang, S., Hidalgo-Reyes, Y., et al. (2019). Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat Commun 10, 2806. (PMID: 31243272659499810.1038/s41467-019-10577-3)
Uribe, R.V., van der Helm, E., Misiakou, M.A., Lee, S.W., Kol, S., and Sommer, M.O.A. (2019). Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial Phyla. Cell Host Microbe 26, 702. (PMID: 3172603210.1016/j.chom.2019.09.005)
Wang, X., Li, X., Ma, Y., He, J., Liu, X., Yu, G., Yin, H., and Zhang, H. (2022). Inhibition mechanisms of CRISPR-Cas9 by AcrIIA17 and AcrIIA18. Nucleic Acids Res 50, 512–521. (PMID: 3489386010.1093/nar/gkab1197)
Wang, X., Ye, L., Lyu, M., Ursache, R., Löytynoja, A., and Mähönen, A.P. (2020). An inducible genome editing system for plants. Nat Plants 6, 766–772. (PMID: 32601420761133910.1038/s41477-020-0695-2)
Watters, K.E., Fellmann, C., Bai, H.B., Ren, S.M., and Doudna, J.A. (2018). Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362, 236–239. (PMID: 30190307618574910.1126/science.aau5138)
Watters, K.E., Shivram, H., Fellmann, C., Lew, R.J., McMahon, B., and Doudna, J.A. (2020). Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc Natl Acad Sci USA 117, 6531–6539. (PMID: 32156733710418710.1073/pnas.1917668117)
Wu, Y., He, Y., Sretenovic, S., Liu, S., Cheng, Y., Han, Y., Liu, G., Bao, Y., Fang, Q., Zheng, X., et al. (2022a). CRISPR-BETS: a base-editing design tool for generating stop codons. Plant Biotechnol J 20, 499–510. (PMID: 3466923210.1111/pbi.13732)
Wu, Y., Ren, Q., Zhong, Z., Liu, G., Han, Y., Bao, Y., Liu, L., Xiang, S., Liu, S., Tang, X., et al. (2022b). Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. Plant Biotechnol J 20, 1670–1682. (PMID: 35524459939835110.1111/pbi.13838)
Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., and Liu, Y.G. (2017). CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10, 1246–1249. (PMID: 2862454410.1016/j.molp.2017.06.004)
Xu, Q., Liu, Q., Chen, Z., Yue, Y., Liu, Y., Zhao, Y., and Zhou, D.X. (2021). Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 49, 4613–4628. (PMID: 33836077809621310.1093/nar/gkab244)
Xu, Y., Zhang, L., Ou, S., Wang, R., Wang, Y., Chu, C., and Yao, S. (2020). Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun 11, 5441. (PMID: 33116138759523610.1038/s41467-020-19320-9)
Xu, Z., Zhang, H., Zhang, X., Jiang, H., Liu, C., Wu, F., Qian, L., Hao, B., Czajkowsky, D.M., Guo, S., et al. (2019). Interplay between the bacterial protein deacetylase CobB and the second messenger c-di-GMP. EMBO J 38, e100948. (PMID: 31418899674550210.15252/embj.2018100948)
Yan, H., Sun, H., Jia, X., Lv, C., Li, J., and Zhao, Q. (2020). Phenotypic, transcriptomic, and metabolomic signatures of root-specifically overexpressed OsCKX2 in rice. Front Plant Sci 11, 575304. (PMID: 3332963510.3389/fpls.2020.575304)
Yang, H., and Patel, D.J. (2017). Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell 67, 117–127.e5. (PMID: 28602637559522210.1016/j.molcel.2017.05.024)
Yang, S., Chang, R., Yang, H., Zhao, T., Hong, Y., Kong, H.E., Sun, X., Qin, Z., Jin, P., Li, S., et al. (2017). CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127, 2719–2724. (PMID: 28628038549074110.1172/JCI92087)
Yin, C., Zhang, T., Qu, X., Zhang, Y., Putatunda, R., Xiao, X., Li, F., Xiao, W., Zhao, H., Dai, S., et al. (2017). In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 25, 1168–1186. (PMID: 28366764541784710.1016/j.ymthe.2017.03.012)
You, Q., Zhong, Z., Ren, Q., Hassan, F., Zhang, Y., and Zhang, T. (2018). CRISPRMatch: an automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis. Int J Biol Sci 14, 858–862. (PMID: 29989077603674810.7150/ijbs.24581)
Yu, L., and Marchisio, M.A. (2021). Saccharomyces cerevisiae synthetic transcriptional networks harnessing dCas12a and type V-A anti-CRISPR proteins. ACS Synth Biol 10, 870–883. (PMID: 3381902010.1021/acssynbio.1c00006)
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771. (PMID: 26422227463822010.1016/j.cell.2015.09.038)
Zhang, F., Maeder, M.L., Unger-Wallace, E., Hoshaw, J.P., Reyon, D., Christian, M., Li, X., Pierick, C.J., Dobbs, D., Peterson, T., et al. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107, 12028–12033. (PMID: 20508152290067310.1073/pnas.0914991107)
Zhang, H., Li, Z., Daczkowski, C.M., Gabel, C., Mesecar, A.D., and Chang, L. (2019). Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins. Cell Host Microbe 25, 815–826.e4. (PMID: 3115534510.1016/j.chom.2019.05.004)
Zhang, L., Li, G., Zhang, Y., Cheng, Y., Roberts, N., Glenn, S.E., DeZwaan-McCabe, D., Rube, H.T., Manthey, J., Coleman, G., et al. (2023). Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants. Genome Biol 24, 102. (PMID: 371220091015053710.1186/s13059-023-02929-6)
Zhang, Y., Ren, Q., Tang, X., Liu, S., Malzahn, A.A., Zhou, J., Wang, J., Yin, D., Pan, C., Yuan, M., et al. (2021). Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat Commun 12, 1944. (PMID: 33782402800769510.1038/s41467-021-22330-w)
Zheng, X., Zhang, S., Liang, Y., Zhang, R., Liu, L., Qin, P., Zhang, Z., Wang, Y., Zhou, J., Tang, X., et al. (2023). Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice. Plant Genome 16, e20283. (PMID: 3666086710.1002/tpg2.20283)
Zhong, Z., Liu, G., Tang, Z., Xiang, S., Yang, L., Huang, L., He, Y., Fan, T., Liu, S., Zheng, X., et al. (2023). Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system. Nat Commun 14, 6102. (PMID: 377731561054144610.1038/s41467-023-41802-9)
Zhong, Z., Sretenovic, S., Ren, Q., Yang, L., Bao, Y., Qi, C., Yuan, M., He, Y., Liu, S., Liu, X., et al. (2019). Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant 12, 1027–1036. (PMID: 3092863710.1016/j.molp.2019.03.011)
Zhong, Z., Zhang, Y., You, Q., Tang, X., Ren, Q., Liu, S., Yang, L., Wang, Y., Liu, X., Liu, B., et al. (2018). Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11, 999–1002. (PMID: 2956745210.1016/j.molp.2018.03.008)
Zhou, J., Deng, K., Cheng, Y., Zhong, Z., Tian, L., Tang, X., Tang, A., Zheng, X., Zhang, T., Qi, Y., et al. (2017). CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8, 1598. (PMID: 28955376560235310.3389/fpls.2017.01598)
Zhou, J., Liu, G., Zhao, Y., Zhang, R., Tang, X., Li, L., Jia, X., Guo, Y., Wu, Y., Han, Y., et al. (2023). An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nat Plants 9, 588–604. (PMID: 3702465910.1038/s41477-023-01384-2)
Zhou, J., Xin, X., He, Y., Chen, H., Li, Q., Tang, X., Zhong, Z., Deng, K., Zheng, X., Akher, S.A., et al. (2019). Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38, 475–485. (PMID: 3015959810.1007/s00299-018-2340-3)
Zhou, J., Yuan, M., Zhao, Y., Quan, Q., Yu, D., Yang, H., Tang, X., Xin, X., Cai, G., Qian, Q., et al. (2021). Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol J 19, 1240–1252. (PMID: 33440058819665610.1111/pbi.13544)
Zhou, J., Zhang, R., Jia, X., Tang, X., Guo, Y., Yang, H., Zheng, X., Qian, Q., Qi, Y., and Zhang, Y. (2022). CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol J 20, 310–322. (PMID: 3455525210.1111/pbi.13713)
Zhu, Y., Gao, A., Zhan, Q., Wang, Y., Feng, H., Liu, S., Gao, G., Serganov, A., and Gao, P. (2019). Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell 74, 296–309.e7. (PMID: 30850331675090210.1016/j.molcel.2019.01.038)
Zuo, J., Niu, Q.W., and Chua, N.H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24, 265–273. (PMID: 1106970010.1046/j.1365-313x.2000.00868.x) - Contributed Indexing: Keywords: AcrVA1; CRISPRa; Cas12a; anti-CRISPR; fine-tuning genome editing; inducible and tissue specific genome editing; off-target effects; synthetic logic circuit
- Accession Number: 0 (CRISPR-Associated Proteins)
EC 3.1.- (Cas12a protein)
0 (Bacterial Proteins)
EC 3.1.- (Endodeoxyribonucleases) - Publication Date: Date Created: 20240819 Date Completed: 20241217 Latest Revision: 20241217
- Publication Date: 20250114
- Accession Number: 10.1007/s11427-024-2704-7
- Accession Number: 39158766
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.