Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering: impact of functionalized multi-walled carbon nanotubes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Beta-tricalcium phosphate (β-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, β-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of β-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated β-TCP suspensions exhibited faster structural recovery compared to pure β-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of β-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified β-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
      (© 2024. The Author(s).)
    • References:
      Bahrami, S., Baheiraei, N. & Shahrezaee, M. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci. Rep. 11, 16783 (2021). (PMID: 34408206837394210.1038/s41598-021-96271-1)
      Roshanfar, F. et al. Reinforcement of calcium phosphate cement with hybrid silk fibroin/kappa-carrageenan nanofibers. Biomedicines 11(3), 850–861 (2023). (PMID: 369798301004523810.3390/biomedicines11030850)
      Shams, M., Karimi, M., Ghollasi, M., Nezafati, N. & Salimi, A. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: The effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Ceram. Int. 44, 20211–20219 (2018). (PMID: 10.1016/j.ceramint.2018.08.005)
      Hesaraki, S., Ebadzadeh, T. & Ahmadzadeh-Asl, S. Nanosilicon carbide/hydroxyapatite nanocomposites: Structural, mechanical and in vitro cellular properties. J. Mater. Sci. Mater. Med. 21, 2141–2149 (2010). (PMID: 2037653910.1007/s10856-010-4068-7)
      Nezafati, N., Moztarzadeh, F., Hesaraki, S., Moztarzadeh, Z. & Mozafari, M. Biological response of a recently developed nanocomposite based on calcium phosphate cement and sol–gel derived bioactive glass fibers as substitution of bone tissues. Ceram. Int. 39, 289–297 (2013). (PMID: 10.1016/j.ceramint.2012.06.024)
      Rezaei, H. et al. Mussel-inspired polydopamine induced the osteoinductivity to ice-templating PLGA-gelatin matrix for bone tissue engineering application. Biotechnol. Appl. Biochem. 68, 185–196 (2021). (PMID: 3224856110.1002/bab.1911)
      Roshanfar, F., Hesaraki, S. & Dolatshahi-Pirouz, A. Electrospun silk fibroin/kappa-carrageenan hybrid nanofibers with enhanced osteogenic properties for bone regeneration applications. Biology 11, 751–766 (2022). (PMID: 35625479913893710.3390/biology11050751)
      Hamlehkhan, A., Mozafari, M., Nezafati, N., Azami, M. & Samadikuchaksaraei, A. Novel bioactive poly (ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffolds for bone regeneration. Key Eng. Mater. 493, 909–915 (2012).
      Haghighizadeh, E., Shahrezaee, M., Sharifzadeh, R. & Momeni, M. Transforming growth factor-β3 relation with osteoporosis and osteoporotic fractures. J. Res. Med. Sci. 24, 1–46 (2019).
      Matinfar, M., Mesgar, A. S. & Mohammadi, Z. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Mater. Sci. Eng. C 100, 341–353 (2019). (PMID: 10.1016/j.msec.2019.03.015)
      Dasgupta, S., Maji, K. & Nandi, S. K. Investigating the mechanical, physiochemical and osteogenic properties in gelatinchitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Mater. Sci. Eng. C 94, 713728 (2019). (PMID: 10.1016/j.msec.2018.10.022)
      Mathieu, L. et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27, 905–916 (2006). (PMID: 1605134610.1016/j.biomaterials.2005.07.015)
      Shams, M. et al. Synthesis and characterization of electrospun bioactive glass nanofibers-reinforced calcium sulfate bone cement and its cell biological response. Ceram. Int. 46, 10029–10039 (2020). (PMID: 10.1016/j.ceramint.2019.12.270)
      Ma, H., Feng, C., Chang, J. & Wu, C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 79, 37–59 (2018). (PMID: 3016520110.1016/j.actbio.2018.08.026)
      Hesaraki, S., Safari, M. & Shokrgozar, M. A. Composite bone substitute materials based on β-tricalcium phosphate and magnesium-containing sol–gel derived bioactive glass. J. Mater. Sci. Mater. Med. 20, 2011–2017 (2009). (PMID: 1946653010.1007/s10856-009-3783-4)
      Verrier, S. et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur. Cells Mater. 32, 87–110 (2016). (PMID: 10.22203/eCM.v032a06)
      He, F. et al. 3D printing and physicochemical and biological characterizations of gallium-containing magnesium/calcium phosphate ceramic scaffolds. Ceram. Int. 49, 34173 (2023). (PMID: 10.1016/j.ceramint.2023.08.127)
      Qin, L. et al. The preparation of a difunctional porous β-tricalcium phosphate scaffold with excellent compressive strength and antibacterial properties. RSC Adv. 10, 28397–28407 (2020). (PMID: 35519120905564810.1039/D0RA02388D)
      Torres, F. G., Nazhat, S. N., Fadzullah, S. H. S. M., Maquet, V. & Boccaccini, A. R. Mechanical properties and bioactivity of porous PLGA/TiO 2 nanoparticle-filled composites for tissue engineering scaffolds. Compos. Sci. Technol. 67, 1139–1147 (2007). (PMID: 10.1016/j.compscitech.2006.05.018)
      Fabbri, P., Cannillo, V., Sola, A., Dorigato, A. & Chiellini, F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Compos. Sci. Technol. 70, 1869–1878 (2010). (PMID: 10.1016/j.compscitech.2010.05.029)
      Peroglio, M. et al. Toughening of bio-ceramics scaffolds by polymer coating. J. Eur. Ceram. Soc. 27, 2679–2685 (2007). (PMID: 10.1016/j.jeurceramsoc.2006.10.016)
      Zhao, J. et al. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids Surf. B 74, 159–166 (2009). (PMID: 10.1016/j.colsurfb.2009.07.012)
      Miao, X., Tan, D. M., Jian, L., Yin, X. & Crawford, R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 4, 638–645 (2008). (PMID: 1805429710.1016/j.actbio.2007.10.006)
      Kunio, A. et al. Effects of added Zn doped β-tricalcium phosphate (ZnTCP) on mechanical and biological properties of apatite cement. Key Eng. Mater. 192–195, 785–788 (2001).
      Fielding, G. A., Bandyopadhyay, A. & Bose, S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28, 113 (2012). (PMID: 2204794310.1016/j.dental.2011.09.010)
      Gao, C., Liu, T., Shuai, C. & Peng, S. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: Mechanical and biological performance. Sci. Rep. 4, 4712 (2014). (PMID: 24736662398848110.1038/srep04712)
      Murata, H. Rheology—Theory and application to biomaterials. In Polymerization (ed. Gomes, A. S.) 403 (IntechOpen, 2012).
      Saba, G., Hesaraki, S. & Hajisafari, M. Utlization of rheological parameters for the prediction of ß-TCP suspension suitability to fabricate bone tissue engineering scaffold through foam replication method. J. Aust. Ceram. Soc. 54, 587–599 (2018). (PMID: 10.1007/s41779-018-0187-2)
      Porsani, N. K., Trombini, V., Ana, P. A. & Setz, L. F. G. β-Tricalcium phosphate shaped by replica method. Cerâmica 65, 523–530 (2019). (PMID: 10.1590/0366-69132019653762665)
      Deschamps, S. et al. On the synthesis and characterization of β-tricalcium phosphate scaffolds coated with collagen or poly (D, L-lactic acid) for alveolar bone augmentation. Eur. J. Dent. 11, 496–502 (2017). (PMID: 29279677572773610.4103/ejd.ejd_4_17)
      Shahi, S. et al. Evaluation of physical, mechanical and biological properties of β-tri-calcium phosphate/Poly-3-hydroxybutyrate nano composite scaffold for bone tissue engineering application. Adv. Perform. Mater. 36, 1–13 (2021).
      Veetil, V. J. & Ye, K. Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 25, 709–721 (2009). (PMID: 19496152270019010.1002/btpr.165)
      Hopley, E. L., Salmasi, S., Kalaskar, D. M. & Seifalian, A. M. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 32, 1000–1014 (2014). (PMID: 2485831410.1016/j.biotechadv.2014.05.003)
      Correa-Duarte, M. A. et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4, 2233–2236 (2004). (PMID: 10.1021/nl048574f)
      Ahadian, S. et al. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Sci. Rep. 4, 4271 (2014). (PMID: 24642903395872110.1038/srep04271)
      Ahadian, S. et al. Hybrid hydrogel-aligned carb on nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 31, 134–143 (2016). (PMID: 2662169610.1016/j.actbio.2015.11.047)
      Mohajeri, M., Behnam, B. & Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell. Physiol. 234, 298–319 (2018). (PMID: 3007818210.1002/jcp.26899)
      Abarrategi, A. et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29, 94–102 (2008). (PMID: 1792804810.1016/j.biomaterials.2007.09.021)
      Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017). (PMID: 10.1103/RevModPhys.89.035005)
      Diez-Escudero, A., Espanol, M., Beats, S. & Ginebra, M. P. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition. Acta Biomater. 60, 8192 (2017). (PMID: 10.1016/j.actbio.2017.07.033)
      De Mori, A. et al. Evaluation of antibacterial and cytotoxicity properties of silver nanowires and their composites with carbon nanotubes for biomedical applications. Int. J. Mol. Sci. 21, 2303 (2020). (PMID: 32225118717826110.3390/ijms21072303)
      Vallapragada, V. V., Inti, G. & Ramulu, J. S. A validated inductively coupled plasma-optical emission spectrometry (ICP-OES) method to estimate free calcium and phosphorus in in vitro phosphate binding study of eliphos tablets. Am. J. Chem. 2, 718 (2011).
      Zhang, Y., Madhu, V., Dighe, A. S., Irvine, J. N. & Cui, Q. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors 30, 333–343 (2012). (PMID: 2301701910.3109/08977194.2012.720574)
      Brown, O., McAfee, M., Clarke, S. & Buchanan, F. Sintering of biphasic calcium phosphates. J. Mater. Sci. Mater. Med. 21, 2271–2279 (2010). (PMID: 2023223510.1007/s10856-010-4032-6)
      Lahiri, D., Singh, V., Keshri, A. K., Seal, S. & Agarwal, A. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties. Carbon 48, 3103–3120 (2010). (PMID: 10.1016/j.carbon.2010.04.047)
      Sopyan, I., Nurfaezah, S. & Ammar, M. Development of triphasic calcium phosphate–carbon nanotubes (HA/TCP-CNT) composite: A preliminary study. Key Eng. Mater. 1, 258–261 (2013).
      Neelgund, G. M. & Oki, A. Deposition of silver nanoparticles on dendrimer functionalized multiwalled carbonnanotubes: Synthesis, characterization and antimicrobial activity. J. Nanosci. Nanotechnol. 11, 3621–3629 (2011). (PMID: 21776746314595810.1166/jnn.2011.3756)
      Neelgund, G. M. & Oki, A. Effects of residual gas exposure on the field emission properties of ZnO nanorods. J. Nanosci. Nanotechnol. 11, 3621–3629 (2011). (PMID: 21776746314595810.1166/jnn.2011.3756)
      Okoronkwo, E. A., Imoisili, P. E., Olubayode, S. A. & Olusunle, S. O. O. Development of silica nanoparticle from corn cob ash. Adv. Nanopart. 5, 135–139 (2016). (PMID: 10.4236/anp.2016.52015)
      Mahabole, M. P., Aiyer, R. C., Ramakrishna, C. V., Sreedhar, B. & Khairnar, R. S. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6), 535–545 (2005). (PMID: 10.1007/BF02706339)
      Janusz, W. et al. A study of surface properties of calcium phosphate by means of photoacoustic spectroscopy (FT-IR/PAS), potentiometric titration and electrophoretic measurements. Eur. Phys. J. Spl. Top. 154, 329–333 (2008). (PMID: 10.1140/epjst/e2008-00570-9)
      Guo, Y. et al. The surface modification of nanosilica, preparation of nanosilica/acrylic core-shell latex, and is application in toughening PVC matrix. J. Appl. Polym. Sci. 107, 2671–2680 (2008). (PMID: 10.1002/app.27310)
      Alioui, H., Bouras, O. & Bollinger, J.-C. Toward an efficient antibacterial agent: Zn and Mg-doped hydroxyapatite nanopowders. J. Environ. Sci. Health A 54, 315–327 (2019). (PMID: 10.1080/10934529.2018.1550292)
      Stango, S. A. X. & Vijayalakshmi, U. Synthesis and characterization of hydroxyapatite/carboxylic acid functionalized MWCNTS composites and its triple layer coatings for biomedical applications. Ceram. Int. 45, 69–81 (2019). (PMID: 10.1016/j.ceramint.2018.09.135)
      Niu, L., Kua, H. & Chua, D. H. C. Bonelike apatite formation utilizing carbon nanotubes as template. Langmuir 26, 4069–4073 (2010). (PMID: 2002072210.1021/la9034722)
      Abuilaiwi, F. A., Laoui, T., Al-Harthi, M. & Ali Atieh, M. Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab. J. Sci. Eng. 35, 37–48 (2010).
      Gupta, V. & Saleh, T. A. Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-Degradation (INTECH, 2011). (PMID: 10.5772/18009)
      Tan, W., Twomey, J., Guo, D., Madhavan, K. & Li, M. Evaluation of nanostructural, mechanical, and biological properties of collagen–nanotube. IEEE Trans. NanoBioSci. 9, 111–120 (2010). (PMID: 10.1109/TNB.2010.2043367)
      Olivas, I., García-Casillas, P., Martinez-Sánchez, R., Villafañe, A. M. & Martínez-Pérez, C. A. Chitosan/MWCNT composites prepared by thermal induced phase separation. J. Alloys Compd. 495, 592–595 (2010). (PMID: 10.1016/j.jallcom.2009.10.205)
      Skibiński, S. et al. Study on βTCP/P (3HB) scaffolds—Physicochemical properties and biological performance in low oxygen concentration. Int. J. Mol. Sci. 23, 11587 (2022). (PMID: 36232889956966710.3390/ijms231911587)
      Velasco, M. A., Narváez-Tovar, C. A. & Garzón-Alvarado, D. A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Bio Med. Res. Int. 2015, 729076 (2015).
      Xu, J. et al. The application of multi-walled carbon nanotubes in bone tissue repair hybrid scaffolds and the effect on cell growth in vitro. Polymers (Basel) 11, 230 (2019). (PMID: 3096021410.3390/polym11020230)
      Nouri-Felekori, M. et al. Characterization and multiscale modeling of novel calcium phosphate composites containing hydroxyapatite whiskers and gelatin microspheres. J. Alloys Compd. 1, 154938 (2020). (PMID: 10.1016/j.jallcom.2020.154938)
      Constanda, S. et al. Carbon nanotubes-hydroxyapatite nanocomposites for an improved osteoblast cell response. J. Nanomater. 2016, 1–10 (2016). (PMID: 10.1155/2016/3941501)
      Belyanskaya, L., Manser, P., Spohn, P., Bruinink, A. & Wick, P. The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45, 2643–2648 (2007). (PMID: 10.1016/j.carbon.2007.08.010)
      Liu, H. et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling. Cell Death Dis. 2, e159 (2011). (PMID: 21593791312211410.1038/cddis.2011.27)
      Zancanela, D. C. et al. Multiand single walled carbon nanotubes: Effects on cell responses and biomineralization of osteoblasts cultures. J. Mater. Sci. Mater. Med. 27, 1–10 (2016). (PMID: 10.1007/s10856-016-5673-x)
      Bhattacharya, M. et al. Bone formation on carbon nanotube composite. J. Biomed. Mater. Res. A 96, 75–82 (2011). (PMID: 2110515410.1002/jbm.a.32958)
      Radhakrishnan, I., Manigandan, A., Chinnaswamy, P., Subramanian, A. & Sethuraman, S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials 162, 82–98 (2018). (PMID: 2943888310.1016/j.biomaterials.2018.01.056)
      Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339, 189–195 (2010). (PMID: 1964965510.1007/s00441-009-0832-8)
      Xu, J. et al. The application of multi-walled carbon nanotubes in bone tissue repair hybrid scaffolds and the effect on cell growth in vitro. Polymers 11, 230 (2019). (PMID: 30960214641904010.3390/polym11020230)
    • Grant Information:
      14023037 Materials and Energy Research Center
    • Contributed Indexing:
      Keywords: Bone substitute; Carbon nanotube; Foam replication; β-Tricalcium phosphate
    • Accession Number:
      0 (Calcium Phosphates)
      0 (Nanotubes, Carbon)
      0 (beta-tricalcium phosphate)
    • Publication Date:
      Date Created: 20240817 Date Completed: 20240817 Latest Revision: 20240820
    • Publication Date:
      20240821
    • Accession Number:
      PMC11330522
    • Accession Number:
      10.1038/s41598-024-68419-2
    • Accession Number:
      39154029