Stemness and hybrid epithelial-mesenchymal profiles guide peritoneal dissemination of malignant mesothelioma and pseudomyxoma peritonei.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0042124 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0215 (Electronic) Linking ISSN: 00207136 NLM ISO Abbreviation: Int J Cancer Subsets: MEDLINE
    • Publication Information:
      Publication: 1995- : New York, NY : Wiley-Liss
      Original Publication: 1966-1984 : Genève : International Union Against Cancer
    • Subject Terms:
    • Abstract:
      Intrabdominal dissemination of malignant mesothelioma (MM) and pseudomyxoma peritonei (PMP) is poorly characterized with respect to the stemness window which malignant cells activate during their reshaping on the epithelial-mesenchymal (E/M) axis. To gain insights into stemness properties and their prognostic significance in these rarer forms of peritoneal metastases (PM), primary tumor cultures from 55 patients selected for cytoreductive surgery with hyperthermic intraperitoneal chemotherapy were analyzed for cancer stem cells (CSC) by aldehyde dehydrogenase 1 (ALDH1) and spheroid formation assays, and for expression of a set of plasticity-related genes to measure E/M transition (EMT) score. Intratumor heterogeneity was also analyzed. Samples from PM of colorectal cancer were included for comparison. Molecular data were confirmed using principal component and cluster analyses. Associations with survival were evaluated using Kaplan-Meier and Cox regression models. The activity of acetylsalicylic acid (ASA), a stemness modifier, was tested in five cultures. Significantly increased amounts of ALDH1 bright -cells identified high-grade PMP, and discriminated solid masses from ascitic/mucin-embedded tumor cells in both forms of PM. Epithelial/early hybrid EMT scores and an early hybrid expression pattern correlated with pluripotency factors were significantly associated with early peritoneal progression (p = .0343 and p = .0339, respectively, log-rank test) in multivariable models. ASA impaired spheroid formation and increased cisplatin sensitivity in all five cultures. These data suggest that CSC subpopulations and hybrid E/M states may guide peritoneal spread of MM and PMP. Stemness could be exploited as targetable vulnerability to increase chemosensitivity and improve patient outcomes. Additional research is needed to confirm these preliminary data.
      (© 2024 The Author(s). International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.)
    • References:
      Dongre A, Weinberg RA. New insights into the mechanisms of epithelial‐mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69‐84. doi:10.1038/s41580‐018‐0080‐4.
      Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi‐tool for tumor progression. EMBO J. 2021;40(18):e108647. doi:10.15252/embj.2021108647.
      Aiello NM, Kang Y. Context‐dependent EMT programs in cancer metastasis. J Exp Med. 2019;216(5):1016‐1026. doi:10.1084/jem.20181827.
      Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell. 2019;24(1):65‐78. doi:10.1016/j.stem.2018.11.011.
      Jolly MK, Somarelli JA, Sheth M, et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther. 2019;194:161‐184. doi:10.1016/j.pharmthera.2018.09.007.
      Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463‐468. doi:10.1038/s41586‐018‐0040‐3.
      Mikula‐Pietrasik J, Uruski P, Tykarski A, Ksiazek K. The peritoneal “soil” for a cancerous “seed”: a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci. 2018;75(3):509‐525. doi:10.1007/s00018‐017‐2663‐1.
      Cortes‐Guiral D, Hubner M, Alyami M, et al. Primary and metastatic peritoneal surface malignancies. Nat Rev Dis Primers. 2021;7(1):91. doi:10.1038/s41572‐021‐00326‐6.
      Kusamura S, Barretta F, Yonemura Y, et al. The role of hyperthermic intraperitoneal chemotherapy in pseudomyxoma peritonei after cytoreductive surgery. JAMA Surg. 2021;156(3):e206363. doi:10.1001/jamasurg.2020.6363.
      Valenzuela CD, Solsky IB, Erali RA, et al. Long‐term survival in patients treated with cytoreduction and heated intraperitoneal chemotherapy for peritoneal mesothelioma at a single high‐volume center. Ann Surg Oncol. 2023;30(5):2666‐2675. doi:10.1245/s10434‐022‐13061‐3.
      Quenet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open‐label, phase 3 trial. Lancet Oncol. 2021;22(2):256‐266. doi:10.1016/S1470‐2045(20)30599‐4.
      Filis P, Mauri D, Markozannes G, Tolia M, Filis N, Tsilidis K. Hyperthermic intraperitoneal chemotherapy (HIPEC) for the management of primary advanced and recurrent ovarian cancer: a systematic review and meta‐analysis of randomized trials. ESMO Open. 2022;7(5):100586. doi:10.1016/j.esmoop.2022.100586.
      Sommariva A, Pilati P, Rossi CR. Cyto‐reductive surgery combined with hyperthermic intra‐peritoneal chemotherapy for peritoneal surface malignancies: current treatment and results. Cancer Treat Rev. 2012;38(4):258‐268. doi:10.1016/j.ctrv.2011.07.001.
      Brandl A, Yonemura Y, Glehen O, Sugarbaker P, Rau B. Long term survival in patients with peritoneal metastasised gastric cancer treated with cytoreductive surgery and HIPEC: a multi‐institutional cohort from PSOGI. Eur J Surg Oncol. 2021;47(1):172‐180. doi:10.1016/j.ejso.2020.10.006.
      Sugarbaker PH, Jablonski KA. Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann Surg. 1995;221(2):124‐132. doi:10.1097/00000658‐199502000‐00002.
      Carr NJ, Cecil TD, Mohamed F, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) modified Delphi process. Am J Surg Pathol. 2016;40(1):14‐26. doi:10.1097/PAS.0000000000000535.
      Baratti D, Kusamura S, Cabras AD, Bertulli R, Hutanu I, Deraco M. Diffuse malignant peritoneal mesothelioma: long‐term survival with complete cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy (HIPEC). Eur J Cancer. 2013;49(15):3140‐3148. doi:10.1016/j.ejca.2013.05.027.
      Lignitto L, Mattiolo A, Negri E, et al. Crosstalk between the mesothelium and lymphomatous cells: insight into the mechanisms involved in the progression of body cavity lymphomas. Cancer Med. 2014;3(1):1‐13. doi:10.1002/cam4.159.
      Piano MA, Brunello A, Cappellesso R, et al. Periostin and epithelial‐mesenchymal transition score as novel prognostic markers for leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma. Clin Cancer Res. 2020;26(12):2921‐2931. doi:10.1158/1078‐0432.CCR‐19‐2297.
      Oses C, Stortz M, Verneri P, Guberman A, Levi V. Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochem Soc Trans. 2021;49(6):2871‐2878. doi:10.1042/BST20210856.
      Srinivasan D, Senbanjo L, Majumdar S, Franklin RB, Chellaiah MA. Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. J Cell Biochem. 2018;120:2413‐2428. doi:10.1002/jcb.27573.
      Tan TZ, Miow QH, Miki Y, et al. Epithelial‐mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6(10):1279‐1293. doi:10.15252/emmm.201404208.
      Calabro ML, Gasperini P, Di Gangi IM, et al. Antineoplastic activity of lentiviral vectors expressing interferon‐alpha in a preclinical model of primary effusion lymphoma. Blood. 2009;113(19):4525‐4533. doi:10.1182/blood‐2008‐09‐180307.
      Wilson MM, Weinberg RA, Lees JA, Guen VJ. Emerging mechanisms by which EMT programs control stemness. Trends Cancer. 2020;6(9):775‐780. doi:10.1016/j.trecan.2020.03.011.
      Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267‐284. doi:10.1146/annurev.med.58.062105.204854.
      Wei Y, Li Y, Chen Y, et al. ALDH1: a potential therapeutic target for cancer stem cells in solid tumors. Front Oncol. 2022;12:1026278. doi:10.3389/fonc.2022.1026278.
      Vassalli G. Aldehyde dehydrogenases: not just markers, but functional regulators of stem cells. Stem Cells Int. 2019;2019:3904645. doi:10.1155/2019/3904645.
      Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020;13(1):97. doi:10.1186/s13045‐020‐00931‐0.
      Zou Z, Zheng W, Fan H, et al. Aspirin enhances the therapeutic efficacy of cisplatin in oesophageal squamous cell carcinoma by inhibition of putative cancer stem cells. Br J Cancer. 2021;125(6):826‐838. doi:10.1038/s41416‐021‐01499‐3.
      Khoo BL, Grenci G, Lim JSY, et al. Low‐dose anti‐inflammatory combinatorial therapy reduced cancer stem cell formation in patient‐derived preclinical models for tumour relapse prevention. Br J Cancer. 2019;120(4):407‐423. doi:10.1038/s41416‐018‐0301‐9.
      Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173(2):338‐354.e15. doi:10.1016/j.cell.2018.03.034.
      Barriuso J, Nagaraju RT, Belgamwar S, et al. Early adaptation of colorectal cancer cells to the peritoneal cavity is associated with activation of “Stemness” programs and local inflammation. Clin Cancer Res. 2021;27(4):1119‐1130. doi:10.1158/1078‐0432.CCR‐20‐3320.
      Laoukili J, Constantinides A, Wassenaar ECE, et al. Peritoneal metastases from colorectal cancer belong to Consensus Molecular Subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity. Br J Cancer. 2022;126(12):1824‐1833. doi:10.1038/s41416‐022‐01742‐5.
      Bronte G, Procopio AD, Graciotti L. The application of cancer stem cell model in malignant mesothelioma. Crit Rev Oncol Hematol. 2022;174:103698. doi:10.1016/j.critrevonc.2022.103698.
      Rodriguez‐Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis. 2016;33(1):97‐113. doi:10.1007/s10585‐015‐9755‐9.
      Bibi R, Pranesh N, Saunders MP, et al. A specific cadherin phenotype may characterise the disseminating yet non‐metastatic behaviour of pseudomyxoma peritonei. Br J Cancer. 2006;95(9):1258‐1264. doi:10.1038/sj.bjc.6603398.
      Levine EA, Votanopoulos KI, Qasem SA, et al. Prognostic molecular subtypes of low‐grade cancer of the appendix. J Am Coll Surg. 2016;222(4):493‐503. doi:10.1016/j.jamcollsurg.2015.12.012.
      Calabro ML, Lazzari N, Rigotto G, Tonello M, Sommariva A. Role of epithelial‐mesenchymal plasticity in pseudomyxoma peritonei: implications for locoregional treatments. Int J Mol Sci. 2020;21(23):9120. doi:10.3390/ijms21239120.
      Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther. 2019;10(1):219. doi:10.1186/s13287‐019‐1288‐8.
      Dalerba P. The dynamic identity of intestinal cancer stem cells. Cell Stem Cell. 2017;20(6):743‐745. doi:10.1016/j.stem.2017.05.018.
      Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212‐226. doi:10.1016/j.tcb.2018.12.001.
      George JT, Jolly MK, Xu S, Somarelli JA, Levine H. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 2017;77(22):6415‐6428. doi:10.1158/0008‐5472.CAN‐16‐3521.
      Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21‐45. doi:10.1016/j.cell.2016.06.028.
      Kroger C, Afeyan A, Mraz J, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A. 2019;116(15):7353‐7362. doi:10.1073/pnas.1812876116.
      Carbone M, Adusumilli PS, Alexander HR Jr, et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69(5):402‐429. doi:10.3322/caac.21572.
      Luond F, Sugiyama N, Bill R, et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021;56(23):3203‐3221 e11. doi:10.1016/j.devcel.2021.11.006.
      Sannino G, Marchetto A, Kirchner T, Grunewald TGP. Epithelial‐to‐mesenchymal and mesenchymal‐to‐epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res. 2017;77(17):4556‐4561. doi:10.1158/0008‐5472.CAN‐17‐0032.
      Lin Z, Fan Z, Zhang X, Wan J, Liu T. Cellular plasticity and drug resistance in sarcoma. Life Sci. 2020;263:118589. doi:10.1016/j.lfs.2020.118589.
      Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial‐mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19(12):716‐732. doi:10.1038/s41568‐019‐0213‐x.
      Feng Y, Tao L, Wang G, et al. Aspirin inhibits prostaglandins to prevents colon tumor formation via down‐regulating Wnt production. Eur J Pharmacol. 2021;906:174173. doi:10.1016/j.ejphar.2021.174173.
      Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571‐598. doi:10.1146/annurev‐biochem‐040320‐103615.
    • Grant Information:
      J93C22001090001 Italian Ministry of Health - 5x1000; J98D20000000001 Italian Ministry of Health - Ricerca Corrente
    • Contributed Indexing:
      Keywords: CRS‐HIPEC; cancer stem cells; epithelial‐mesenchymal plasticity; malignant mesothelioma; pseudomyxoma peritonei
    • Accession Number:
      EC 1.2.1 (Aldehyde Dehydrogenase 1 Family)
      EC 1.2.1.36 (ALDH1A1 protein, human)
      EC 1.2.1.36 (Retinal Dehydrogenase)
    • Publication Date:
      Date Created: 20240815 Date Completed: 20241105 Latest Revision: 20241105
    • Publication Date:
      20241106
    • Accession Number:
      10.1002/ijc.35137
    • Accession Number:
      39146488