Sugar beet molasses: a sweet solution for ectoine production by Nesterenkonia sp.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Orhan F;Orhan F;Orhan F; Ceyran E; Ceyran E
  • Source:
    Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Aug; Vol. 31 (39), pp. 52198-52211. Date of Electronic Publication: 2024 Aug 14.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Ectoine, a biologically significant compound, was successfully produced by a strain of bacteria capable of utilizing sucrose. In a ground-breaking approach, we harnessed the potential of sugar beet molasses, a by-product rich in sucrose, amino acid, and vitamins, as a growth medium for this purpose. Through meticulous investigation, we identified the ideal conditions for maximizing ectoine synthesis. This remarkable milestone was reached by introducing only 1 g of (NH₄)₂SO₄ and 5 mL of molasses per liter, maintaining a pH level of 8.0, upholding a 7.5% NaCl concentration, employing agitation at 120 rpm, and sustaining a temperature of 30 °C. This study marks a pioneering endeavour as it represents the first instance where molasses has been effectively employed to produce ectoine through the cultivation of Nesterenkonia sp. We showcased the production of 75.56 g of the valuable compound ectoine utilizing 1 L of waste molasses with this specific bacterial strain. These findings hold tremendous promise, not only in terms of resource utilization but also for the potential applications of ectoine in various biological contexts.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Al-Dhumri SA, Al Mosallam MS, Zhang W, Alharbi S, Abou-Elwafa SF (2023) Application of molasses as an eco-innovative approach substitutes mineral nitrogen fertilization and enhances sugar beet productivity. Waste Biomass Valorization 14:287–296. https://doi.org/10.1007/s12649-022-01873-z. (PMID: 10.1007/s12649-022-01873-z)
      Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564:121–125. https://doi.org/10.1016/S0014-5793(04)00326-6. (PMID: 10.1016/S0014-5793(04)00326-6)
      Beaulieu M, Beaulieu Y, Melinard J, Pandian S, Goulet J (1995) Influence of ammonium salts and cane molasses on growth of Alcaligenes eutrophus and production of polyhydroxybutyrate. Appl Environ Microbiol 61:165–169. https://doi.org/10.1128/aem.61.1.165-169.1995. (PMID: 10.1128/aem.61.1.165-169.1995)
      Becker J, Wittmann C (2020) Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 65:118–128. https://doi.org/10.1016/j.copbio.2020.02.010. (PMID: 10.1016/j.copbio.2020.02.010)
      Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73:6526–6533. https://doi.org/10.1128/AEM.00508-07. (PMID: 10.1128/AEM.00508-07)
      Bergmann S, David F, Franco-Lara E, Wittmann C, Krull R (2013) Ectoine production by Alkalibacillus haloalkaliphilus -bioprocess development using response surface methodology and model-driven strategies: ectoine production by A. haloalkaliphilus. Eng Life Sci 13:399–407. https://doi.org/10.1002/elsc.201200151. (PMID: 10.1002/elsc.201200151)
      Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099.
      Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
      Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282:31147–31155. https://doi.org/10.1074/jbc.M704023200. (PMID: 10.1074/jbc.M704023200)
      Bussari B, Saudagar PS, Shaligram NS, Survase SA, Singhal RS (2008) Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J Ind Microbiol Biotechnol 35:49–58. https://doi.org/10.1007/s10295-007-0265-x. (PMID: 10.1007/s10295-007-0265-x)
      Calabia BP, Tokiwa Y (2007) Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332. https://doi.org/10.1007/s10529-007-9408-4. (PMID: 10.1007/s10529-007-9408-4)
      Chaudhary LC, Sahoo A, Agarwal N, Kamra DN, Pathak NN (2001) Effect of replacing grain with deoiled rice bran and molasses from the diet of lactating cows. Asian-Australas J Anim Sci 14:646–650. (PMID: 10.5713/ajas.2001.646)
      Chen W-C, Hsu C-C, Lan JC-W, Chang YK, Wang LF, Wei YH (2018) Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875. J Biosci Bioeng 125:578–584. https://doi.org/10.1016/j.jbiosc.2017.12.011. (PMID: 10.1016/j.jbiosc.2017.12.011)
      Chen P-W, Cui Z-Y, Ng HS, Chi-Wei Lan J (2020a) Exploring the additive bio-agent impacts upon ectoine production by Halomonas salina DSM5928T using corn steep liquor and soybean hydrolysate as nutrient supplement. J Biosci Bioeng 130:195–199. https://doi.org/10.1016/j.jbiosc.2020.03.011. (PMID: 10.1016/j.jbiosc.2020.03.011)
      Chen W-C, Yuan F-W, Wang LF, Chien CC, Wei YH (2020b) Ectoine production with indigenous Marinococcus sp. MAR2 isolated from the marine environment. Prep Biochem Biotechnol 50(1):74–81. https://doi.org/10.1080/10826068.2019.1663534. (PMID: 10.1080/10826068.2019.1663534)
      Cheng W, An Q, Zhang J, Shi X, Wang C, Li M, Zhao D (2022) Protective effect of ectoin on UVA/H2O2-induced oxidative damage in human skin fibroblast cells. Appl Sci 12:8531. https://doi.org/10.3390/app12178531. (PMID: 10.3390/app12178531)
      da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Antranikian G (ed) Biotechnology of Extremophiles. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 117–153. (PMID: 10.1007/BFb0102291)
      Dai T, Wang Y, Yang G (2022) Visualization of DNA damage and protection by atomic force microscopy in liquid. Int J Mol Sci 23:4388. https://doi.org/10.3390/ijms23084388. (PMID: 10.3390/ijms23084388)
      Dao V-A, Overhagen S, Bilstein A, Kolot C, Sonnemann U, Mösges R (2019) Ectoine lozenges in the treatment of acute viral pharyngitis: a prospective, active-controlled clinical study. Eur Arch Otorhinolaryngol 276:775–783. https://doi.org/10.1007/s00405-019-05324-9. (PMID: 10.1007/s00405-019-05324-9)
      Dong Y, Zhang H, Wang X, Ma J, Lei P, Xu H, Li S (2021) Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis. Bioprocess Biosyst Eng 44:1557–1566. (PMID: 10.1007/s00449-021-02541-7)
      Fallet C, Rohe P, Franco-Lara E (2010) Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng 107:124–133. https://doi.org/10.1002/bit.22750. (PMID: 10.1002/bit.22750)
      Fondevilla A, Serradilla A, Moreno-Olmedo E, Matskov K, Belmonte M, Sáez A, Acevedo M, López E (2022) Radiochemotheraphy-induced oral mucositis: ectoin solution as a new treatment. J Clin Exp Dent 14(5):e433–e438. https://doi.org/10.4317/jced.59110. (PMID: 10.4317/jced.59110)
      Fredsgaard C, Moore DB, Chen F, Clark BC, Schneegurt MA (2017) Prevalence of sucretolerant bacteria in common soils and their isolation and characterization. Antonie Van Leeuwenhoek 110:995–1005. https://doi.org/10.1007/s10482-017-0873-z. (PMID: 10.1007/s10482-017-0873-z)
      Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496. https://doi.org/10.1007/BF01955150. (PMID: 10.1007/BF01955150)
      Harding T, Brown MW, Simpson AGB, Roger AJ (2016) Osmoadaptative strategy and its molecular signature in obligately halophilic heterotrophic protists. Genome Biol Evol 8:2241–2258. https://doi.org/10.1093/gbe/evw152. (PMID: 10.1093/gbe/evw152)
      Harper JD, Lansbury PT (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407. https://doi.org/10.1146/annurev.biochem.66.1.385. (PMID: 10.1146/annurev.biochem.66.1.385)
      Higginbotham JD, McCarthy J (1998) Quality and storage of molasses. In: van der Poel PW, Schiweck H, Schwartz T (Eds) Sugar technology-beet and cane manufacture. Verlag Dr. Albert Bartens KG, Berlin, Germany, pp 973–992.
      Jamir L, Kumar V, Kaur J, Kumar S, Singh H (2021) Composition, valorization and therapeutical potential of molasses: a critical review. Environ Technol Rev 10:131–142. https://doi.org/10.1080/21622515.2021.1892203. (PMID: 10.1080/21622515.2021.1892203)
      Kanapathipillai M, Lentzen G, Sierks M, Park CB (2005) Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s β-amyloid. FEBS Lett 579:4775–4780. https://doi.org/10.1016/j.febslet.2005.07.057. (PMID: 10.1016/j.febslet.2005.07.057)
      Kanapathipillai M, Ku SH, Girigoswami K, Park CB (2008) Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106–126. Biochem Biophys Res Commun 365:808–813. https://doi.org/10.1016/j.bbrc.2007.11.074. (PMID: 10.1016/j.bbrc.2007.11.074)
      Kroker M, Sydlik U, Autengruber A, Cavelius C, Weighardt H, Kraegeloh A, Unfried K (2015) Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model. Part Fibre Toxicol 12:20. https://doi.org/10.1186/s12989-015-0093-5. (PMID: 10.1186/s12989-015-0093-5)
      Lang Y, Bai L, Ren YN, Zhang LH, Nagata S (2011) Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles 15:303–310. https://doi.org/10.1007/s00792-011-0360-9. (PMID: 10.1007/s00792-011-0360-9)
      Lapidot A, Ben-Asher E, Eisenstein M (1995) Tetrahydropyrimidine derivatives inhibit binding of a Tat-like, arginine-containing peptide, to HIV TAR RNA in vitro. FEBS Lett 367:33–38. https://doi.org/10.1016/0014-5793(95)00514-A. (PMID: 10.1016/0014-5793(95)00514-A)
      Larsen PI, Syednes KL, Strom AR (1987) Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol 147:1–7. (PMID: 10.1007/BF00492896)
      Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634. https://doi.org/10.1007/s00253-006-0553-9. (PMID: 10.1007/s00253-006-0553-9)
      Li TT, Qu A, Yuan XN, Tan FX, Li XW, Wang T, Zhang LH (2017) Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02. IOP Conf Ser Earth Environ Sci 77:012019. https://doi.org/10.1088/1755-1315/77/1/012019. (PMID: 10.1088/1755-1315/77/1/012019)
      Liu PV, Hsieh H-C (1969) Inhibition of protease production of various bacteria by ammonium salts: its effect on toxin production and virulence. J Bacteriol 99:406–413. https://doi.org/10.1128/jb.99.2.406-413.1969. (PMID: 10.1128/jb.99.2.406-413.1969)
      Mizzi L, Maniscalco D, Gaspari S, Chatzitzika C, Gatt R, Valdramidis VP (2020) Assessing the individual microbial inhibitory capacity of different sugars against pathogens commonly found in food systems. Lett Appl Microbiol 71:251–258. https://doi.org/10.1111/lam.13306. (PMID: 10.1111/lam.13306)
      Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4:155–174. https://doi.org/10.1146/annurev.bioeng.4.092801.094202. (PMID: 10.1146/annurev.bioeng.4.092801.094202)
      Nagata S, Adachi K, Sano H (1997) NMR analyses of compatible solutes in a halotolerant Brevibacterium sp. Microbiology 143:2517–2517. https://doi.org/10.1099/00221287-143-7-2517. (PMID: 10.1099/00221287-143-7-2517)
      Nakhla S, Albehery B, Shawky S, Lotfi S, Kotb M, El-Bassiouni E, El-Abd E (2022) Pre-irradiation effects of ectoine on radiation-induced cardiotoxicity in female Swiss albino mice model. Arch Pharm Sci Ain Shams Univ 6:169–180. https://doi.org/10.21608/aps.2022.148701.1094. (PMID: 10.21608/aps.2022.148701.1094)
      Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour Technol 98:1238–1245. https://doi.org/10.1016/j.biortech.2006.05.003. (PMID: 10.1016/j.biortech.2006.05.003)
      Omara AMA, Sharaf AE-MM, El-Hela AA, Shahin AA, El-Bialy HAA, El-Fouly MZ (2020) Optimizing ectoine biosynthesis using response surface methodology and osmoprotectant applications. Biotechnol Lett 42:1003–1017. https://doi.org/10.1007/s10529-020-02833-0. (PMID: 10.1007/s10529-020-02833-0)
      Onraedt AE, Walcarius BA, Soetaert WK, Vandamme EJ (2005) Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis. Biotechnol Prog 21:1206–1212. https://doi.org/10.1021/bp0500967. (PMID: 10.1021/bp0500967)
      Oren A (2002) Halophilic Microorganisms and Their Environments. Kluwer Academic,  Boston, pp 575.  https://doi.org/10.1007/0-306-48053-0.
      Orhan F, Ceyran E (2023) Valorisation of cheese whey for ectoine production by Halomonas neptunia. Int J Dairy Technol 1471–0307:13008. https://doi.org/10.1111/1471-0307.13008. (PMID: 10.1111/1471-0307.13008)
      Orhan F, Demirci A, Yanmis D (2017) CaCO 3 and MgCO 3 dissolving halophilic bacteria. Geomicrobiol J 34:804–810. https://doi.org/10.1080/01490451.2016.1273410. (PMID: 10.1080/01490451.2016.1273410)
      Orhan F, Ceyran E, Akincioğlu A (2023a) Optimization of ectoine production from Nesterenkonia xinjiangensis and one-step ectoine purification. Bioresour Technol 371:128646. https://doi.org/10.1016/j.biortech.2023.128646. (PMID: 10.1016/j.biortech.2023.128646)
      Orhan F, Demirci A, Efe D, Aydın R, Bozarı S (2023b) Usage of ectoine as a cryoprotectant for cryopreservation of lactic acid bacteria. Folia Microbiol (praha). https://doi.org/10.1007/s12223-023-01098-0. (PMID: 10.1007/s12223-023-01098-0)
      Orhan F, Parlak KU, Tabay D, Bozarı S (2023c) Alleviation of the cadmium toxicity by application of a microbial derived compound, ectoine. Water Air Soil Pollut 234:534. https://doi.org/10.1007/s11270-023-06562-8. (PMID: 10.1007/s11270-023-06562-8)
      Orhan F, Akıncıoğlu A, Ceyran E (2024) Ectoine production from a novel bacterial strain and high-purity purification with a cost-effective and single-step method. J Biotechnology 388:24–34. https://doi.org/10.1016/j.jbiotec.2024.04.003. (PMID: 10.1016/j.jbiotec.2024.04.003)
      Orhan F, Ceyran E (2022) Identification of novel halophilic/halotolerant bacterial species producing compatible solutes. Int Microbiol. https://doi.org/10.1007/s10123-022-00289-y.
      Palmonari A, Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fusaro I, Giammarco M, Formigoni A, Mammi LME (2021) In vitro evaluation of sugar digestibility in molasses. Ital J Anim Sci 20:571–577. https://doi.org/10.1080/1828051X.2021.1899063. (PMID: 10.1080/1828051X.2021.1899063)
      Pasley S, Zylberberg C, Matosevic S (2017) Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. Immunol Lett 192:35–41. https://doi.org/10.1016/j.imlet.2017.09.012. (PMID: 10.1016/j.imlet.2017.09.012)
      Rieckmann T, Gatzemeier F, Christiansen S, Rothkamm K, Münscher A (2019) The inflammation-reducing compatible solute ectoine does not impair the cytotoxic effect of ionizing radiation on head and neck cancer cells. Sci Rep 9:6594. https://doi.org/10.1038/s41598-019-43040-w. (PMID: 10.1038/s41598-019-43040-w)
      Salar-García MJ, Bernal V, Pastor JM, Salvador M, Argandoña M, Nieto JJ, Vargas C, Cánovas M (2017) Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens. Microb Cell Factories 16:23. https://doi.org/10.1186/s12934-017-0643-7. (PMID: 10.1186/s12934-017-0643-7)
      Saum SH, Müller V (2008) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726. https://doi.org/10.1111/j.1462-2920.2007.01494.x. (PMID: 10.1111/j.1462-2920.2007.01494.x)
      Severin J, Wohlfarth A, Galinski EA (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Microbiology 138:1629–1638. https://doi.org/10.1099/00221287-138-8-1629. (PMID: 10.1099/00221287-138-8-1629)
      Shafee N, Aris SN, Basri M, Salleh AB (2005) Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J Appl Sci Res 1(1):1–8.
      Tanimura K, Nakayama H, Tanaka T, Kondo A (2013) Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata. Bioresour Technol 142:523–529. https://doi.org/10.1016/j.biortech.2013.05.004. (PMID: 10.1016/j.biortech.2013.05.004)
      Tao P, Li H, Yu Y, Gu J, Liu Y (2016) Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress. Appl Microbiol Biotechnol 100:6779–6789. https://doi.org/10.1007/s00253-016-7549-x. (PMID: 10.1007/s00253-016-7549-x)
      Taskin M, Ortucu S, Aydogan MN, Arslan NP (2016) Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew Energy 99:198–204. https://doi.org/10.1016/j.renene.2016.06.060. (PMID: 10.1016/j.renene.2016.06.060)
      Toma MK, Ruklisha MP, Vanags JJ, Zeltina MO, Leite MP, Galinina NI, Viesturs UE, Tengerdy RP (1991) Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol Bioeng 38:552–556. https://doi.org/10.1002/bit.260380514. (PMID: 10.1002/bit.260380514)
      Tran B-H, Dao V-A, Bilstein A, Unfried K, Shah-Hosseini K, Mösges R (2019) Ectoine-containing inhalation solution versus saline inhalation solution in the treatment of acute bronchitis and acute respiratory infections: a prospective, controlled, observational study. BioMed Res Int 2019:1–8. https://doi.org/10.1155/2019/7945091. (PMID: 10.1155/2019/7945091)
      Unfried K, Kroker M, Autengruber A, Gotić M, Sydlik U (2014) The compatible solute ectoine reduces the exacerbating effect of environmental model particles on the immune response of the airways. J Allergy 2014:1–7. https://doi.org/10.1155/2014/708458. (PMID: 10.1155/2014/708458)
      Valli V, Gómez-Caravaca AM, Di Nunzio M, Danesi F, Caboni MF, Bordoni A (2012) Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. J Agric Food Chem 60:12508–12515. https://doi.org/10.1021/jf304416d. (PMID: 10.1021/jf304416d)
      Van-Thuoc D, Guzmán H, Thi-Hang M, Hatti-Kaul R (2010) Ectoine production by Halomonas boliviensis: optimization using response surface methodology. Mar Biotechnol 12:586–593. https://doi.org/10.1007/s10126-009-9246-6. (PMID: 10.1007/s10126-009-9246-6)
      Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005. (PMID: 10.1128/AEM.71.7.3692-3700.2005)
      Wei Y-H, Yuan F-W, Chen W-C, Chen S-Y (2011) Production and characterization of ectoine by Marinococcus sp. ECT1 isolated from a high-salinity environment. J Biosci Bioeng 111:336–342. https://doi.org/10.1016/j.jbiosc.2010.11.009. (PMID: 10.1016/j.jbiosc.2010.11.009)
      Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, Riclea R, Dickschat JS, Heider J, Bremer E (2016) Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus: ectoine and hydroxyectoine biosynthesis in Archaea. Environ Microbiol 18:1227–1248. https://doi.org/10.1111/1462-2920.13156. (PMID: 10.1111/1462-2920.13156)
    • Contributed Indexing:
      Keywords: Bioprocess development; Biosynthesis; Compatible solutes; Fermentation substrates; Halophiles; Waste valorization
    • Accession Number:
      0 (Amino Acids, Diamino)
      7GXZ3858RY (ectoine)
    • Publication Date:
      Date Created: 20240814 Date Completed: 20240905 Latest Revision: 20240919
    • Publication Date:
      20240919
    • Accession Number:
      10.1007/s11356-024-34674-z
    • Accession Number:
      39143384