Structure-dependent destructive adsorption of organophosphate flame retardants on lipid membranes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Country of Publication: Netherlands NLM ID: 9422688 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-3336 (Electronic) Linking ISSN: 03043894 NLM ISO Abbreviation: J Hazard Mater Subsets: MEDLINE
    • Publication Information:
      Original Publication: Amsterdam : Elsevier,
    • Subject Terms:
    • Abstract:
      The widespread use of organophosphate flame retardants (OPFRs), a serious type of pervasive environmental contaminants, has led to a global concern regarding their diverse toxicities to living beings. Using a combination of experimental and theoretical approaches, we systematically studied the adsorption, accumulation, and influence of a series of OPFRs on the lipid membranes of bacteria and cells. Our results revealed that OPFRs can aggregate in lipid membranes, leading to the destruction of membrane integrity. During this process, the molecular structure of the OPFRs is a dominant factor that significantly influences the strength of their interaction with the lipid membrane, resulting in varying degrees of biotoxicity. Triphenyl phosphate (TPHP), owing to its large molecular size and strong hydrophobicity, causes severe membrane disruption through the formation of nanoclusters. The corresponding severe toxicity originates from the phase transitions of the lipid membranes. In contrast, smaller OPFRs such as triethyl phosphate (TEP) and tris(2-chloroethyl) phosphate (TCEP) have weaker hydrophobicity and induce minimal membrane disturbance and ineffective damage. In vivo, gavage of TPHP induced more severe barrier damage and inflammatory infiltration in mice than TEP or TCEP, confirming the higher toxicity of TPHP. Overall, our study elucidates the structure-dependent adsorption of OPFRs onto lipid membranes, highlighting their destructive interactions with membranes as the origin of OPFR toxicity.
      Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 Elsevier B.V. All rights reserved.)
    • Contributed Indexing:
      Keywords: Biotoxicity origin; OPFR nanocluster; OPFR-membrane interactions; Organophosphate flame retardant (OPFR); Phase transition
    • Accession Number:
      0 (Flame Retardants)
      0 (Organophosphates)
      0 (Membrane Lipids)
      YZE19Z66EA (triphenyl phosphate)
    • Publication Date:
      Date Created: 20240814 Date Completed: 20240907 Latest Revision: 20240907
    • Publication Date:
      20240908
    • Accession Number:
      10.1016/j.jhazmat.2024.135494
    • Accession Number:
      39141940