Dexamethasone reduces cisplatin-induced hair cell damage by inducing cisplatin resistance through metallothionein-2.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7806519 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0843 (Electronic) Linking ISSN: 03445704 NLM ISO Abbreviation: Cancer Chemother Pharmacol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin, New York, Springer International.
    • Subject Terms:
    • Abstract:
      Purpose: Hair cell damage is a common side effect caused by the anticancer drug cisplatin (CDDP), which reduces patient quality of life. One CDDP resistance mechanism that occurs in recurrent cancers is heavy metal detoxification by metallothionein-2 (mt2). Here, we show that in zebrafish larvae, dexamethasone (DEX) reduces CDDP-induced hair cell damage by enhancing mt2 expression.
      Methods: Transgenic zebrafish (cldn: gfp; atoh1: rfp) that express green and red fluorescent proteins in neuromasts and hair cells, respectively, were used. The zebrafish were pretreated with DEX at 52 h post-fertilization (hpf) for 8 h, followed by CDDP treatment for 12 h. The lateral line hair cells of CDDP-treated zebrafish at 72 hpf were observed by fluorescence microscopy.
      Results: Reporting odds ratio (ROR) analysis using an adverse event database indicated an association between a decrease in CDDP-induced ototoxicity and DEX as an antiemetic treatment for cancer chemotherapy. Pretreatment with DEX protected 72 hpf zebrafish hair cells from CDDP-induced damage. The expression of mt2 mRNA was significantly increased by the combination of 10 µM DEX with CDDP. Gene editing of mt2 reversed the protective effect of DEX against CDDP-induced damage in hair cells.
      Conclusion: DEX protects hair cells from CDDP-induced damage through increased mt2 expression, which is a resistance mechanism for platinum-based anticancer drugs.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584. https://doi.org/10.1038/nrc2167. (PMID: 10.1038/nrc216717625587)
      Paz-Ares L, Ciuleanu TE, Cobo M et al (2021) First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol 22:198–211. https://doi.org/10.1016/S1470-2045(20)30641-0. (PMID: 10.1016/S1470-2045(20)30641-033476593)
      Bleiberg H, Conroy T, Paillot B et al (1997) Randomised phase II study of cisplatin and 5-fluorouracil (5-FU) versus cisplatin alone in advanced squamous cell oesophageal cancer. Eur J Cancer 33:1216–1220. https://doi.org/10.1016/S0959-8049(97)00088-9. (PMID: 10.1016/S0959-8049(97)00088-99301445)
      Saxman SB, Finch D, Gonin R, Einhorn LH (1998) Long-term follow-up of a phase III study of three versus four cycles of bleomycin, etoposide, and cisplatin in favorable-prognosis germ-cell tumors: the Indiana University experience. J Clin Oncol 16:702–706. https://doi.org/10.1200/JCO.1998.16.2.702. (PMID: 10.1200/JCO.1998.16.2.7029469360)
      Pearson SE, Taylor J, Patel P, Baguley DM (2019) Cancer survivors treated with platinum-based chemotherapy affected by ototoxicity and the impact on quality of life: a narrative synthesis systematic review. Int J Audiol 58:685–695. https://doi.org/10.1080/14992027.2019.1660918. (PMID: 10.1080/14992027.2019.166091831545660)
      Arora R, Thakur JS, Azad RK et al (2009) Cisplatin-based chemotherapy: add high-frequency audiometry in the regimen. Indian J Cancer 46:311–317. https://doi.org/10.4103/0019-509X.55551. (PMID: 10.4103/0019-509X.5555119749461)
      Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72:931–935. https://doi.org/10.1038/sj.ki.5002434. (PMID: 10.1038/sj.ki.500243417653135)
      Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369. https://doi.org/10.1097/MOO.0b013e3282eee452. (PMID: 10.1097/MOO.0b013e3282eee45217823555)
      Ioannidis JPA, Hesketh PJ, Lau J (2000) Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting: a meta-analysis of randomized evidence. J Clin Oncol 18:3409–3422. https://doi.org/10.1200/JCO.2000.18.19.3409. (PMID: 10.1200/JCO.2000.18.19.340911013282)
      Karin M, Herschman HR (1981) Induction of metallothionein in HeLa cells by dexamethasone and zinc. Eur J Biochem 113:267–272. https://doi.org/10.1111/j.1432-1033.1981.tb05062.x. (PMID: 10.1111/j.1432-1033.1981.tb05062.x7202410)
      Shina CH, Leea MG, Hana J et al (2017) Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A 114:5683–5688. https://doi.org/10.1073/pnas.1700861114. (PMID: 10.1073/pnas.1700861114)
      Schmidt CJ, Hamer DH (1986) Cell specificity and an effect of ras on human metallothionein gene expression. Proc Natl Acad Sci U S A 83:3346–3350. https://doi.org/10.1073/pnas.83.10.3346. (PMID: 10.1073/pnas.83.10.33463517857323510)
      Andrews PA, Murphy MP, Howell SB (1987) Cancer chemotherapy and pharmacology Metallothionein-mediated cisplatin resistance in human ovarian carcinoma cells*. Cancer Chemother Pharmacol 19:149–154. (PMID: 10.1007/BF002545683568272)
      Surowiak P, Materna V, Maciejczyk A et al (2007) Nuclear metallothionein expression correlates with cisplatin resistance of ovarian cancer cells and poor clinical outcome. Virchows Arch 450:279–285. https://doi.org/10.1007/s00428-006-0362-7. (PMID: 10.1007/s00428-006-0362-717235562)
      Ghysen A, Dambly-Chaudière C (2007) The lateral line microcosmos. Genes Dev 21:2118–2130. https://doi.org/10.1101/gad.1568407. (PMID: 10.1101/gad.156840717785522)
      Omoto T, Asaka J, Sakai T et al (2021) Disproportionality analysis of safety signals for a wide variety of opioid-related adverse events in elderly patients using the Japanese adverse drug event report (JADER) database. Biol Pharm Bull 44:627–634. https://doi.org/10.1248/bpb.b20-00904. (PMID: 10.1248/bpb.b20-0090433952819)
      Wada H, Ghysen A, Satou C et al (2010) Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Dev Biol 340:583–594. https://doi.org/10.1016/j.ydbio.2010.02.017. (PMID: 10.1016/j.ydbio.2010.02.01720171200)
      Sanchez SMR, Fuson O, Tarang S et al (2018) Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep. https://doi.org/10.1038/s41598-018-33520-w. (PMID: 10.1038/s41598-018-33520-w305318286288161)
      Yin H, Wang J, Wu M et al (2019) Preventive effects of evodiamine on dexamethasone-induced osteoporosis in zebrafish. Biomed Res Int. https://doi.org/10.1155/2019/5859641. (PMID: 10.1155/2019/5859641320831216949667)
      Kong EY, Yeung WK, Chan TKY et al (2016) Exogenous nitric oxide suppresses in vivo X-ray-induced targeted and non-targeted effects in zebrafish embryos. Int J Mol Sci. https://doi.org/10.3390/ijms17081321. (PMID: 10.3390/ijms17081321279836825187908)
      Wiedenhoft H, Hayashi L, Coffin AB (2017) PI3K and inhibitor of apoptosis proteins modulate gentamicin-induced hair cell death in the zebrafish lateral line. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00326. (PMID: 10.3389/fncel.2017.00326290936655651234)
      Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:555–564. https://doi.org/10.1111/gtc.12154. (PMID: 10.1111/gtc.1215424848337)
      Gralla RJ, Osoba D, Kris MG et al (1999) Recommendations for the use of anti-emetics: evidence-based, clinical practice guidelines. Am Soc Clin Oncol. J Clin Oncol 17:2971–2994. https://doi.org/10.1200/JCO.1999.17.9.2971. (PMID: 10.1200/JCO.1999.17.9.2971)
      Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. CMLS Cell Mol Life Sci 59:627–647. https://doi.org/10.1007/s00018-002-8454-2. (PMID: 10.1007/s00018-002-8454-212022471)
      Kelly EJ, Sandgren EP, Brinster RL, Palmiter RD (1997) A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Biochemistry 94:10045–10050. https://doi.org/10.1073/pnas.94.19.10045. (PMID: 10.1073/pnas.94.19.10045)
      Liedtke A, Muncke J, Rüfenacht K, Eggen RIL (2008) Molecular multi-effect screening of environmental pollutants using the MolDarT. Environ Toxicol 23:59–67. https://doi.org/10.1002/tox.20305. (PMID: 10.1002/tox.2030518214934)
      Bradford YM, Van Slyke CE, Ruzicka L, et al (2022) Zebrafish information network, the knowledgebase for Danio rerio research. Genetics 220. https://doi.org/10.1093/genetics/iyac016.
      Dohi Y, Shimaoka H, Ikeuchi M et al (2005) Role of metallothionein isoforms in bone formation processes in rat marrow mesenchymal stem cells in culture. Biol Trace Elem Res 104:057–070. https://doi.org/10.1385/BTER:104:1:057. (PMID: 10.1385/BTER:104:1:057)
      Boucher JG, Husain M, Rowan-Carroll A et al (2014) Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring) 22:2333–2343. https://doi.org/10.1002/oby.20848. (PMID: 10.1002/oby.2084825047013)
      Hyllner SJ, Andersson T, Haux C, Olsson P-E (1989) Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J Cell Physiol 139:24–28. https://doi.org/10.1002/jcp.1041390105. (PMID: 10.1002/jcp.10413901052708457)
      Daldal A, Odabasi O, Serbetcioglu B (2007) The protective effect of intratympanic dexamethasone on cisplatin-induced ototoxicity in guinea pigs. Otolaryngol Head Neck Surg 137:747–752. https://doi.org/10.1016/j.otohns.2007.05.068. (PMID: 10.1016/j.otohns.2007.05.06817967639)
      Hill GW, Kent Morest D, Parham K (2008) Cisplatin-induced ototoxicity: Effect of intratympanic dexamethasone injections. Otol Neurotol 29:1005–1011. https://doi.org/10.1097/MAO.0b013e31818599d5. (PMID: 10.1097/MAO.0b013e31818599d5187165672720789)
      Paksoy M, Ayduran E, Şanlı A et al (2011) The protective effects of intratympanic dexamethasone and vitamin e on cisplatin-induced ototoxicity are demonstrated in rats. Med Oncol 28:615–621. https://doi.org/10.1007/s12032-010-9477-4. (PMID: 10.1007/s12032-010-9477-420300971)
      Marshak T, Steiner M, Kaminer M et al (2014) Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study. Otolaryngol Head Neck Surg (United States) 150:983–990. https://doi.org/10.1177/0194599814524894. (PMID: 10.1177/0194599814524894)
      Bury NR, Chung MJ, Sturm A et al (2008) Cortisol stimulates the zinc signaling pathway and expression of metallothioneins and ZnT1 in rainbow trout gill epithelial cells. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00646.2007. (PMID: 10.1152/ajpregu.00646.200718077514)
      So HS, Kim HJ, Kim Y et al (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9:290–306. https://doi.org/10.1007/s10162-008-0126-y. (PMID: 10.1007/s10162-008-0126-y185842442538144)
      Minami SB, Sha SH, Schacht J (2004) Antioxidant protection in a new animal model of cisplatin-induced ototoxicity. Hear Res 198:137–143. https://doi.org/10.1016/j.heares.2004.07.016. (PMID: 10.1016/j.heares.2004.07.01615567610)
      Mouridsen HT, Langer SW, Buter J et al (2007) Treatment of anthracycline extravasation with Savene (dexrazoxane): results from two prospective clinical multicentre studies. Ann Oncol 18:546–550. https://doi.org/10.1093/annonc/mdl413. (PMID: 10.1093/annonc/mdl41317185744)
    • Contributed Indexing:
      Keywords: Cisplatin; Dexamethasone; Hair cell damage; Metallothionein-2; Zebrafish hair cells
    • Accession Number:
      0 (Antineoplastic Agents)
      Q20Q21Q62J (Cisplatin)
      7S5I7G3JQL (Dexamethasone)
      9038-94-2 (Metallothionein)
      0 (Zebrafish Proteins)
    • Publication Date:
      Date Created: 20240814 Date Completed: 20240928 Latest Revision: 20241004
    • Publication Date:
      20241004
    • Accession Number:
      10.1007/s00280-024-04706-z
    • Accession Number:
      39141082