Optimization of penalization function in Bayesian penalized likelihood reconstruction algorithm for [ 18 F]flutemetamol amyloid PET images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Switzerland NLM ID: 101760671 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2662-4737 (Electronic) Linking ISSN: 26624729 NLM ISO Abbreviation: Phys Eng Sci Med Subsets: MEDLINE
    • Publication Information:
      Original Publication: Switzerland : Springer, [2020]-
    • Subject Terms:
    • Abstract:
      Point-spread-function (PSF) correction is not recommended for amyloid PET images due to Gibbs artifacts. Q.Clear™, a Bayesian Penalized Likelihood (BPL) reconstruction method without incorporating PSF correction reduces these artifacts but degrades image contrast by our previous findings. The present study aimed to recover lost contrast by optimizing reconstruction parameters in time-of-flight (TOF) BPL reconstruction of amyloid PET images without PSF correction. We selected candidate conditions based on a phantom study and then determined which were optimal in a clinical study. Phantom images were reconstructed under conditions of 1‒9 iterations, β 300-1000 and γ factors from 2 to 10 in TOF-BPL without PSF correction. We evaluated the %contrast and the coefficients of variation (CV, %). Standardized uptake value ratios (SUVr) and Centiloid scales (CL) were calculated from PET images acquired from 71 participants after an [ 18 F]flutemetamol injection. Both %contrast and CV were independent of iterations, whereas a trade-off was found between γ factors and β. We selected a γ factors of 5 without PSF correction (iterations, 1; β, 500) and of 10 without PSF correction (iterations, 1; β, 800) as candidates for clinical investigation. The SUVr and CL remained stable across various conditions, and CL scales effectively discriminated amyloid PET using measured values. The optimal reconstruction parameters of TOF-BPL for [ 18 F]flutemetamol PET images were γ factor 10, iterations 1 and β 800, without PSF correction.
      Competing Interests: Declarations. Competing interests: Duetto toolbox used in this study was provided by GE HealthCare.
      (© 2024. Australasian College of Physical Scientists and Engineers in Medicine.)
    • References:
      Ahn S, Fessler JA (2003) Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging 22(5):1–15. (PMID: 10.1109/TMI.2003.812251)
      Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, Wollenweber SD, Manjeshwar RM (2015) Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol 60(15):5733–5751. (PMID: 10.1088/0031-9155/60/15/573326158503)
      Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, Hermann K, Badawi RD, Cherry SR, Bradley KM, McGowan DR (2021) New PET technologies—embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging 48(9):2711–2726. (PMID: 10.1007/s00259-021-05390-4340811538263417)
      Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV (2015) Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med 56(9):1447–1452. (PMID: 10.2967/jnumed.115.15930126159585)
      Asma E, Ahn S, Ross SG, Chen A, Manjeshwar RM (2012) Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record pp 4062–6.
      Miwa K, Wagatsuma K, Nemoto R, Masubuchi M, Kamitaka Y, Yamao T, Hiratsuka S, Yamaguchi M, Yoshii T, Kobayashi R, Miyaji N, Ishii K (2020) Detection of sub-centimeter lesions using digital TOF-PET/CT system combined with Bayesian penalized likelihood reconstruction algorithm. Ann Nucl Med 34(10):762–771. (PMID: 10.1007/s12149-020-01500-832623569)
      Yoshii T, Miwa K, Yamaguchi M, Shimada K, Wagatsuma K, Yamao T, Kamitaka Y, Hiratsuka S, Kobayashi R, Ichikawa H, Miyaji N, Miyazaki T, Ishii K (2020) Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for 18F-NaF bone PET/CT images acquired over shorter durations using a custom-designed phantom. EJNMMI Phys 7(1):56. (PMID: 10.1186/s40658-020-00325-8329153447486353)
      Lindstrom E, Oddstig J, Danfors T, Jogi J, Hansson O, Lubberink M (2020) Image reconstruction methods affect software-aided assessment of pathologies of [ 18 F]flutemetamol and [ 18 F]FDG brain-PET examinations in patients with neurodegenerative diseases. Neuroimage Clin 28:102386. (PMID: 10.1016/j.nicl.2020.102386328826457476314)
      Reynes-Llompart G, Gamez-Cenzano C, Vercher-Conejero JL, Sabate-Llobera A, Calvo-Malvar N, Marti-Climent JM (2018) Phantom, clinical, and texture indices evaluation and optimization of a penalized-likelihood image reconstruction method (Q.Clear) on a BGO PET/CT scanner. Med Phys 45(7):3214–3222. (PMID: 10.1002/mp.1298629782657)
      Shkumat NA, Vali R, Shammas A (2020) Clinical evaluation of reconstruction and acquisition time for pediatric 18 F-FDG brain PET using digital PET/CT. Pediatr Radiol 50(7):966–972. (PMID: 10.1007/s00247-020-04640-132125447)
      Wagatsuma K, Miwa K, Kamitaka Y, Koike E, Yamao T, Yoshii T, Kobayashi R, Nezu S, Sugamata Y, Miyaji N, Imabayashi E, Ishibashi K, Toyohara J, Ishii K (2022) Determination of optimal regularization factor in Bayesian penalized likelihood reconstruction of brain PET images using [ 18 F]FDG and [ 11 C]PiB. Med Phys 49(5):2995–3005. (PMID: 10.1002/mp.1559335246870)
      Murata T, Miwa K, Miyaji N, Wagatsuma K, Hasegawa T, Oda K, Umeda T, Iimori T, Masuda Y, Terauchi T, Koizumi M (2016) Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22 Na source. EJNMMI Phys 3(1):26. (PMID: 10.1186/s40658-016-0162-3277833735080272)
      Rahmim A, Qi J, Sossi V (2013) Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 40(6):064301. (PMID: 10.1118/1.4800806237186203663852)
      van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, Lubberink M, Willemsen ATM, Visser EP (2017) Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging 44(Suppl 1):4–16. (PMID: 286878665541089)
      Yamaguchi S, Wagatsuma K, Miwa K, Ishii K, Inoue K, Fukushi M (2018) Bayesian penalized-likelihood reconstruction algorithm suppresses edge artifacts in PET reconstruction based on point-spread-function. Phys Med 47:73–79. (PMID: 10.1016/j.ejmp.2018.02.01329609821)
      Wegmann S, Jung YJ, Chinnathambi S, Mandelkow EM, Mandelkow E, Muller DJ (2010) Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J Biol Chem 285(35):27302–27313. (PMID: 10.1074/jbc.M110.145318205666522930729)
      Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1–13. (PMID: 10.1016/j.jalz.2011.10.00722265587)
      Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4):535–562. (PMID: 10.1016/j.jalz.2018.02.01829653606)
      Smith AM, Obuchowski NA, Foster NL, Klein G, Mozley PD, Lammertsma AA, Wahl RL, Sunderland JJ, Vanderheyden JL, Benzinger TLS, Kinahan PE, Wong DF, Perlman ES, Minoshima S, Matthews D (2023) The RSNA QIBA profile for amyloid PET as an imaging biomarker for cerebral amyloid quantification. J Nucl Med 64(2):294–303. (PMID: 10.2967/jnumed.122.264031361377609902844)
      Wagatsuma K, Sakata M, Miwa K, Hamano Y, Kawakami H, Kamitaka Y, Yamao T, Miyaji N, Ishibashi K, Tago T, Toyohara J, Ishii K (2024) Phantom and clinical evaluation of the Bayesian penalised likelihood reconstruction algorithm Q.Clear without PSF correction in amyloid PET images. EJNMMI Phys 11(1):37. (PMID: 10.1186/s40658-024-00641-33864792411035535)
      Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, Toyohara J, Ishii K (2017) Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med 42:203–210. (PMID: 10.1016/j.ejmp.2017.09.12429173917)
      Miwa K, Yoshii T, Wagatsuma K, Nezu S, Kamitaka Y, Yamao T, Kobayashi R, Fukuda S, Yakushiji Y, Miyaji N, Ishii K (2023) Impact of gamma factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images. EJNMMI Phys 10(1):4. (PMID: 10.1186/s40658-023-00527-w366819949868206)
      Akamatsu G, Ikari Y, Nishio T, Nishida H, Ohnishi A, Aita K, Sasaki M, Sasaki M, Senda M (2016) Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med 30(1):18–28. (PMID: 10.1007/s12149-015-1024-026337533)
      Verwer EE, Golla SSV, Kaalep A, Lubberink M, van Velden FHP, Bettinardi V, Yaqub M, Sera T, Rijnsdorp S, Lammertsma AA, Boellaard R (2021) Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J Nucl Med Mol Imaging 48(9):2856–2870. (PMID: 10.1007/s00259-021-05201-w335175178263427)
      Wagatsuma K, Miwa K, Akamatsu G, Yamao T, Kamitaka Y, Sakurai M, Fujita N, Hanaoka K, Matsuda H, Ishii K (2023) Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 37(9):494–503. (PMID: 10.1007/s12149-023-01847-837243882)
      Ikari Y, Akamatsu G, Nishio T, Ishii K, Ito K, Iwatsubo T, Senda M (2016) Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys 3(1):23. (PMID: 10.1186/s40658-016-0159-y277095465052249)
      Miwa K, Umeda T, Murata T, Wagatsuma K, Miyaji N, Terauchi T, Koizumi M, Sasaki M (2016) Evaluation of scatter limitation correction: a new method of correcting photopenic artifacts caused by patient motion during whole-body PET/CT imaging. Nucl Med Commun 37(2):147–154. (PMID: 10.1097/MNM.000000000000040326440565)
      Wagatsuma K, Oda K, Sakata M, Inaji M, Miwa K, Sasaki M, Toyohara J, Ishii K (2018) Validation of scatter limitation correction to eliminate scatter correction error in oxygen-15 gas-inhalation positron emission tomography images. Nucl Med Commun 39(10):936–944. (PMID: 10.1097/MNM.000000000000088229985832)
      Imabayashi E, Tamamura N, Yamaguchi Y, Kamitaka Y, Sakata M, Ishii K (2022) Automated semi-quantitative amyloid PET analysis technique without MR images for Alzheimer’s disease. Ann Nucl Med 36(10):865–875. (PMID: 10.1007/s12149-022-01769-x358213119515054)
      Wagatsuma K, Sakata M, Ishibashi K, Hirayama A, Kawakami H, Miwa K, Suzuki Y, Ishii K (2020) Direct comparison of brain [(18)F]FDG images acquired by SiPM-based and PMT-based PET/CT: phantom and clinical studies. EJNMMI Phys 7(1):70. (PMID: 10.1186/s40658-020-00337-4332264517683764)
      Shekari M, Verwer EE, Yaqub M, Daamen M, Buckley C, Frisoni GB, Visser PJ, Farrar G, Barkhof F, Gispert JD, Boellaard R, Consortium A (2023) Harmonization of brain PET images in multi-center PET studies using Hoffman phantom scan. EJNMMI Phys 10(1):68. (PMID: 10.1186/s40658-023-00588-x3790633810618151)
      Cho SH, Choe YS, Park S, Kim YJ, Kim HJ, Jang H, Kim SJ, Kim JP, Jung YH, Kim BC, Na DL, Moon SH, Seo SW (2020) Appropriate reference region selection of 18 F-florbetaben and 18 F-flutemetamol beta-amyloid PET expressed in Centiloid. Sci Rep 10(1):14950. (PMID: 10.1038/s41598-020-70978-z329179307486392)
      Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, Sherwin P (2014) Automated quantification of 18 F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med 55(10):1623–1628. (PMID: 10.2967/jnumed.114.14210925146124)
      Verger A, Doyen M, Campion JY, Guedj E (2021) The pons as reference region for intensity normalization in semi-quantitative analysis of brain 18 FDG PET: application to metabolic changes related to ageing in conventional and digital control databases. EJNMMI Res 11(1):31. (PMID: 10.1186/s13550-021-00771-0337610197990981)
      Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, Johnson KA, Mathis CA, Minhas D, Pontecorvo MJ, Rowe CC, Skovronsky DM, Mintun MA (2015) The Centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement 11(1):1. (PMID: 10.1016/j.jalz.2014.07.00325443857)
      Yamagishi S, Miwa K, Kamitaki S, Anraku K, Sato S, Yamao T, Kubo H, Miyaji N, Oguchi K (2023) Performance characteristics of a new-generation digital bismuth germanium oxide PET/CT system, Omni Legend 32, according to NEMA NU 2–2018 standards. J Nucl Med 64(12):1990–1997. (PMID: 10.2967/jnumed.123.26614037857503)
      Deller TW, Ahn S, Jansen F, Schramm G, Wangerin KA, Spangler-Bickell MG, Stearns C, Khalighi MM (2021) Implementation and image quality benefit of a hybrid-space PET point spread function. 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) pp 1–5.
    • Grant Information:
      JP20K16747 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: Alzheimer’s disease; Amyloid imaging; Dementia; Quantitative analysis; Regularized reconstruction
    • Accession Number:
      0F3M7032P5 (flutemetamol)
      0 (Aniline Compounds)
      0 (Amyloid)
      0 (Benzothiazoles)
    • Publication Date:
      Date Created: 20240812 Date Completed: 20241224 Latest Revision: 20250106
    • Publication Date:
      20250106
    • Accession Number:
      10.1007/s13246-024-01476-z
    • Accession Number:
      39133373