Dual-source photon-counting computed tomography for coronary in-stent observation: influence of heart rate and virtual monoenergetic image.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 100969716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1875-8312 (Electronic) Linking ISSN: 15695794 NLM ISO Abbreviation: Int J Cardiovasc Imaging Subsets: MEDLINE
    • Publication Information:
      Publication: [New York] : Springer
      Original Publication: Boston : Kluwer Academic Publishers, c2001-
    • Subject Terms:
    • Abstract:
      To investigate the effect of heart rate and virtual monoenergetic image (VMI) on coronary stent imaging in dual-source photon-counting detector computed tomography (PCD-CT). A dynamic cardiac phantom was used to vary the heart rate at 50 beats per minute (bpm), 70 bpm, and 90 bpm. Five types of stents (4.0 mm, 3.5 mm, 3.0 mm, 2.75 mm, and 2.5 mm diameter) were scanned at three different locations and reconstructed VMI at 70 keV. In addition, 50% stenosis was assessed for 3.0 mm and 4.0 mm stents. To assess in-stent stenosis, 40 keV, 70 keV, and 100 keV images were compared. Measurable lumen and contrast to noise ratio (CNR) from lumen to stenosis were evaluated quantitatively. A-4-point scale was used for the qualitative image quality of in-stent stenosis. The measurable lumen had no significant differences among heart rates in patent stents (p = 0.55). In-stent stenosis, the residual lumen was significantly larger in 40 keV [27.5% (20.8-32.3%)] than in 70 keV [11.5% (10.0-23.0%), p < 0.05] and 100 keV [0% (0-5.2%), p < 0.05]. The CNR was higher in 40 keV [12.5 (7.5-18.2)] than in 70 keV [5.3 (2.9-7.7), p < 0.05] and 100 keV [1.3 (0.5-2.7), p < 0.05]. The image quality was better in 40 keV (3.4 ± 0.7) than in 70 keV [(2.6 ± 0.8), p < 0.05] and 100 keV [(1.3 ± 0.4), p < 0.05]. Dual-source PCD-CT maintains a measurable lumen even at high heart rates. Adjusting the VMI can be helpful in visualizing the in-stent stenosis.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, Chaitman BR, Senior R, López-Sendón J, Alexander KP, Lopes RD, Shaw LJ, Berger JS, Newman JD, Sidhu MS, Goodman SG, Ruzyllo W, Gosselin G, Maggioni AP, White HD, Bhargava B, Min JK, Mancini GBJ, Berman DS, Picard MH, Kwong RY, Ali ZA, Mark DB, Spertus JA, Krishnan MN, Elghamaz A, Moorthy N, Hueb WA, Demkow M, Mavromatis K, Bockeria O, Peteiro J, Miller TD, Szwed H, Doerr R, Keltai M, Selvanayagam JB, Steg PG, Held C, Kohsaka S, Mavromichalis S, Kirby R, Jeffries NO, Harrell FE Jr, Rockhold FW, Broderick S, Ferguson TB Jr, Williams DO, Harrington RA, Stone GW, Rosenberg Y, ISCHEMIA Research Group (2020) Initial invasiveor conservative strategy for stable coronary disease. N Engl J Med 382:1395–1407. https://doi.org/10.1056/NEJMoa1915922. (PMID: 10.1056/NEJMoa1915922322277557263833)
      Sheth T, Dodd JD, Hoffmann U, Abbara S, Finn A, Gold HK, Brady TJ, Cury RC (2007) Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv 69:933–938. https://doi.org/10.1002/ccd.21130. (PMID: 10.1002/ccd.2113017421013)
      Petritsch B, Petri N, Weng AM, Petersilka M, Allmendinger T, Bley TA, Gassenmaier T (2021) Photon-counting computed tomography for coronary stent imaging: in vitro evaluation of 28 coronary stents. Invest Radiol 56:653–660. https://doi.org/10.1097/RLI.0000000000000787. (PMID: 10.1097/RLI.000000000000078733867450)
      De Santis D, Caruso D, Schoepf UJ, Eid M, Albrecht MH, Duguay TM, Varga-Szemes A, Laghi A, De Cecco CN (2018) Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom. Eur Radiol 28:3473–3481. https://doi.org/10.1007/s00330-018-5308-335. (PMID: 10.1007/s00330-018-5308-33529488083)
      Cademartiri F, Mollet NR, van der Lugt A, McFadden EP, Stijnen T, de Feyter PJ, Krestin GP (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665. https://doi.org/10.1148/radiol.2362040468. (PMID: 10.1148/radiol.236204046816040923)
      Sun Z, Ng KH (2012) Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int J Cardiovasc Imaging 28:2109–2119. https://doi.org/10.1007/s10554-011-0006-0. (PMID: 10.1007/s10554-011-0006-022212661)
      Decker JA, O’Doherty J, Schoepf UJ, Todoran TM, Aquino GJ, Brandt V, Baruah D, Fink N, Zsarnoczay E, Flohr T, Schmidt B, Allmendinger T, Risch F, Varga-Szemes A, Emrich T (2023) Stent imaging on a clinical dual-source photon-counting detector CT system-impact of luminal attenuation and sharp kernels on lumen visibility. Eur Radiol 33:2469–2477. https://doi.org/10.1007/s00330-022-09283-4. (PMID: 10.1007/s00330-022-09283-436462045)
      Doerner J, Luetkens JA, Iuga AI, Byrtus J, Haneder S, Maintz D, Hickethier T (2018) Poly-energetic and virtual mono-energetic images from a novel dual-layer spectral detector CT: optimization of window settings is crucial to improve subjective image quality in abdominal CT angiographies. Abdom Radiol (NY) 43:742–750. https://doi.org/10.1007/s00261-017-1241-1. (PMID: 10.1007/s00261-017-1241-128677003)
      Boccalini S, Si-Mohamed SA, Lacombe H, Diaw A, Varasteh M, Rodesch PA, Villien M, Sigovan M, Dessouky R, Coulon P, Yagil Y, Lahoud E, Erhard K, Rioufol G, Finet G, Bonnefoy-Cudraz E, Bergerot C, Boussel L, Douek PC (2022) First in-human results of computed tomography angiography for coronary stent assessment with a spectral photon counting computed tomography. Invest Radiol 57:212–221. doi:15.1097/RLI.0000000000000835.
      Gassenmaier T, Petri N, Allmendinger T, Flohr T, Maintz D, Voelker W, BleyTA (2014) Next generation coronary CT angiography: in vitro evaluation of 27 coronary stents. Eur Radiol 24:2953–2961. https://doi.org/10.1007/s00330-014-3323-6. (PMID: 10.1007/s00330-014-3323-625038859)
      Boccalini S, den Harder AM, Witsenburg M, Breur JPJM, Krestin GP, van BeynumIM, Attrach M, Stagnaro N, Marasini M, de Jong PA, Leiner T, Budde RPJ (2018) Computed tomography image quality of aortic stents in patients with aortic coarctation: a multicentre evaluation. Eur Radiol Exp 2:17. https://doi.org/10.1186/s41747-018-0046-5. (PMID: 10.1186/s41747-018-0046-5332527486091724)
      Nishii T, Funama Y, Kato S, Iwasawa T, Yasuda N, Ota Y, Kawagoe H, Oda S, Tsutsumi T, Utsunomiya D (2022) Comparison of visibility of in-stent restenosis between conventional- and ultra-high spatial resolution computed tomography: coronary arterial phantom study. Jpn J Radiol 40:279–288. https://doi.org/10.1007/s11604-021-01200-x. (PMID: 10.1007/s11604-021-01200-x34586581)
      Sandfort V, Bluemke DA (2022) Overcoming a Technological Hurdle: coronary CT angiography with photon-counting CT. Radiology 303:314–316. https://doi.org/10.1148/radiol.212943. (PMID: 10.1148/radiol.21294335166592)
      Bratke G, Hickethier T, Bar-Ness D, Bunck AC, Maintz D, Pahn G, Coulon P, Si-Mohamed S, Douek P, Sigovan M (2020) Spectral photon-counting computed tomography for coronary stent imaging: evaluation of the potential clinical impact for the delineation of in-stent restenosis. Invest Radiol 55:61–67. https://doi.org/10.1097/RLI.0000000000000610. (PMID: 10.1097/RLI.000000000000061031524765)
    • Contributed Indexing:
      Keywords: Coronary stent; Dual-source CT; Photon-counting CT; Virtual monoenergetic image
    • Publication Date:
      Date Created: 20240811 Date Completed: 20241023 Latest Revision: 20241023
    • Publication Date:
      20241024
    • Accession Number:
      10.1007/s10554-024-03203-x
    • Accession Number:
      39128972