A novel predictor for dosimetry data of lung and the radiation pneumonitis incidence prior to SBRT in lung cancer patients.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) in lung cancer patients with stereotactic body radiation therapy (SBRT), which based on dosimetric data from treatment planning, are limited to patients who have already received radiation therapy (RT). This study aims to identify a novel predictive factor for lung dose distribution and RP probability before devising actionable SBRT plans for lung cancer patients. A comprehensive correlation analysis was performed on the clinical and dose parameters of lung cancer patients who underwent SBRT. Linear regression models were utilized to analyze the dosimetric data of lungs. The performance of the regression models was evaluated using mean squared error (MSE) and the coefficient of determination (R 2 ). Correlational analysis revealed that most clinical data exhibited weak correlations with dosimetric data. However, nearly all dosimetric variables showed "strong" or "very strong" correlations with each other, particularly concerning the mean dose of the ipsilateral lung (MI) and the other dosimetric parameters. Further study verified that the lung tumor ratio (LTR) was a significant predictor for MI, which could predict the incidence of RP. As a result, LTR can predict the probability of RP without the need to design an elaborate treatment plan. This study, as the first to offer a comprehensive correlation analysis of dose parameters, explored the specific relationships among them. Significantly, it identified LTR as a novel predictor for both dose parameters and the incidence of RP, without the need to design an elaborate treatment plan.
      (© 2024. The Author(s).)
    • References:
      Lancet Oncol. 2015 Jun;16(6):630-7. (PMID: 25981812)
      Ann Surg. 2023 Apr 1;277(4):e933-e940. (PMID: 34793352)
      CA Cancer J Clin. 2021 May;71(3):209-249. (PMID: 33538338)
      Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):457-62. (PMID: 21035956)
      Med Phys. 2007 Sep;34(9):3579-86. (PMID: 17926961)
      Radiat Oncol. 2014 Sep 19;9:210. (PMID: 25239200)
      Cancers (Basel). 2018 Aug 02;10(8):. (PMID: 30072613)
      Int J Radiat Oncol Biol Phys. 2021 Mar 1;109(3):756-763. (PMID: 33069796)
      Radiother Oncol. 2021 Mar;156:231-238. (PMID: 33096168)
      Int J Radiat Oncol Biol Phys. 2016 Aug 1;95(5):1357-1366. (PMID: 27325482)
      Int J Radiat Oncol Biol Phys. 2012 Nov 15;84(4):1017-23. (PMID: 22543216)
      Phys Imaging Radiat Oncol. 2024 Jan 04;29:100533. (PMID: 38292649)
      Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6. (PMID: 20171521)
      Int J Radiat Oncol Biol Phys. 2012 Jul 15;83(4):e545-9. (PMID: 22436782)
      Front Oncol. 2024 Jan 31;14:1343170. (PMID: 38357195)
      Lung Cancer. 2013 Nov;82(2):260-5. (PMID: 24054547)
      Turk J Emerg Med. 2018 Aug 07;18(3):91-93. (PMID: 30191186)
      Int J Radiat Oncol Biol Phys. 2023 Mar 1;115(3):696-706. (PMID: 36029911)
      Int J Radiat Oncol Biol Phys. 2023 Mar 1;115(3):746-758. (PMID: 36031028)
      Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):190-5. (PMID: 22929858)
      Mol Cancer. 2023 Feb 21;22(1):40. (PMID: 36810079)
      Acta Oncol. 2011 May;50(4):518-27. (PMID: 21198416)
      Radiother Oncol. 2023 Sep;186:109735. (PMID: 37327975)
      Hematol Oncol Clin North Am. 2004 Feb;18(1):231-43. (PMID: 15005291)
      Ophthalmic Physiol Opt. 2019 Sep;39(5):316-327. (PMID: 31423624)
      Clin Transl Radiat Oncol. 2023 Jun 02;41:100648. (PMID: 37346273)
      Radiother Oncol. 2009 Jun;91(3):307-13. (PMID: 19321217)
      Int J Radiat Oncol Biol Phys. 2003 Mar 1;55(3):724-35. (PMID: 12573760)
      Radiat Res Suppl. 1985;8:S13-9. (PMID: 3867079)
      Int J Radiat Oncol Biol Phys. 1997 Oct 1;39(3):563-70. (PMID: 9336133)
      Radiother Oncol. 2019 Mar;132:142-147. (PMID: 30825963)
      J Thorac Oncol. 2015 Jan;10(1):116-25. (PMID: 25376512)
      Radiat Oncol. 2020 Feb 13;15(1):33. (PMID: 32054487)
      Int J Radiat Oncol Biol Phys. 2002 Oct 1;54(2):329-39. (PMID: 12243805)
      Radiother Oncol. 2020 Nov;152:56-62. (PMID: 32717358)
      Radiother Oncol. 2003 Jun;67(3):275-83. (PMID: 12865175)
      Phys Med Biol. 2007 Feb 21;52(4):1055-73. (PMID: 17264370)
      Int J Radiat Oncol Biol Phys. 1989 Jun;16(6):1623-30. (PMID: 2722599)
      Cancers (Basel). 2021 Jul 25;13(15):. (PMID: 34359634)
      Radiat Oncol. 2007 Jun 07;2:21. (PMID: 17553175)
      J Natl Cancer Cent. 2022 Feb 27;2(1):1-9. (PMID: 39035212)
      Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):172-187. (PMID: 30496880)
      Cancer J. 2016 Jul-Aug;22(4):274-9. (PMID: 27441747)
    • Grant Information:
      cphcf-2022-146 The Research Foundation on Cutting-edge Cancer Supportive Care
    • Contributed Indexing:
      Keywords: Lung cancer; Lung tumor ratio; Machine learning models; Radiation pneumonitis; Stereotactic body radiation therapy
    • Publication Date:
      Date Created: 20240811 Date Completed: 20240811 Latest Revision: 20240814
    • Publication Date:
      20240814
    • Accession Number:
      PMC11317486
    • Accession Number:
      10.1038/s41598-024-69293-8
    • Accession Number:
      39128912