Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Hepatic cell junctions: Pulling a double-duty.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Van Campenhout R;Van Campenhout R; Vinken M; Vinken M
- Source:
Liver international : official journal of the International Association for the Study of the Liver [Liver Int] 2024 Nov; Vol. 44 (11), pp. 2873-2889. Date of Electronic Publication: 2024 Aug 08.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 101160857 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1478-3231 (Electronic) Linking ISSN: 14783223 NLM ISO Abbreviation: Liver Int Subsets: MEDLINE
- Publication Information: Publication: Malden, MA : Wiley-Blackwell
Original Publication: Oxford, UK : Blackwell Munksgaard, c2003- - Subject Terms:
- Abstract: Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
(© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.) - References: Armingol E, Ghaddar A, Joshi CJ, et al. Inferring a spatial code of cell‐cell interactions across a whole animal body. PLoS Comput Biol. 2022;18:1‐28.
Bandzerewicz A, Gadomska‐Gajadhur A. Into the tissues: extracellular matrix and its artificial substitutes: cell signalling mechanisms. Cells. 2022;11:11050914.
Ren G, Roberts AI, Shi Y. Adhesion molecules. Cell Adh Migr. 2016;5:20‐22.
Maître JL, Heisenberg CP. Three functions of cadherins in cell adhesion. Curr Biol. 2013;23:626‐633.
Sergé A. The molecular architecture of cell adhesion: dynamic remodeling revealed by videonanoscopy. Front Cell Dev Biol. 2016;4:36.
Adil MS, Narayanan SP, Somanath PR. Cell‐cell junctions: structure and regulation in physiology and pathology. Tissue Barriers. 2021;9:1848212.
Garcia MA, Nelson WJ, Chavez N. Cell–cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol. 2017;10:a029181.
Samiei M, Ahmadian E, Eftekhari A, Eghbal MA, Rezaie F, Vinken M. Cell junctions and oral health. EXCLI J. 2019;18:317‐330.
Rossello RA, Kohn DH. Review gap junction intercellular communication: a review of a potential platform to modulate craniofacial tissue engineering. J Biomed Mater Res B Appl Biomater. 2009;88:509‐518.
Sasson E, Anzi S, Bell B, et al. Nano‐scale architecture of blood‐brain barrier tight‐junctions. elife. 2021;10:63253.
Skamrahl M, Pang H, Ferle M, et al. Tight junction ZO proteins maintain tissue fluidity, ensuring efficient collective cell migration. Adv Sci. 2021;8:2100478.
Tornavaca O, Chia M, Dufton N, et al. ZO‐1 controls endothelial adherens junctions, cell‐cell tension, angiogenesis, and barrier formation. J Cell Biol. 2015;208:821‐838.
Tunggal JA, Helfrich I, Schmitz A, et al. E‐cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 2005;24:1146‐1156.
Géraud C, Evdokimov K, Straub BK, et al. Unique cell type‐specific junctional complexes in vascular endothelium of human and rat liver sinusoids. PLoS One. 2012;7:e34206.
Konopka G, Tekiela J, Iverson M, Wells C, Duncan SA. Junctional adhesion molecule‐a is critical for the formation of pseudocanaliculi and modulates E‐cadherin expression in hepatic cells. J Biol Chem. 2007;282:28137‐28148.
Treyer A, Müsch A. Hepatocyte polarity. Compr Physiol. 2013;3:243‐287.
Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27:1147‐1151.
Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125‐172.
Kordes C, Bock HH, Reichert D, May P, Häussinger D. Hepatic stellate cells: current state and open questions. Biol Chem. 2021;402:1021‐1032.
Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019;16(5):269‐281. doi:10.1038/s41575-019-0125-y.
Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol. 2013;3(1):541‐565. doi:10.1002/cphy.c120019.
Saxena R, Theise N. Canals of Hering: recent insights and current knowledge. Semin Liver Dis. 2004;24(1):43‐48. doi:10.1055/s-2004-823100.
Pradhan‐Sundd T, Monga SP. Blood‐bile barrier: morphology, regulation, and pathophysiology. Gene Expr. 2019;19:69‐87.
Roehlen N, Suarez AAR, El Saghire H, et al. Tight junction proteins and the biology of hepatobiliary disease. Int J Mol Sci. 2020;21:825.
Van Campenhout R, Leroy K, Cooreman A, et al. Connexin‐based channels in the liver. Compr Physiol. 2022;12:4147‐4163.
Ritchie H, Spooner F, Rose M. Causes of death [Internet]. Our World Data. 2018 https://ourworldindata.org/causes‐of‐death#citation.
Fischer R, Reinehr R, Lu TP, et al. Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology. 2005;128:433‐448.
Gamal W, Treskes P, Samuel K, et al. Low‐dose acetaminophen induces early disruption of cell‐cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541.
Ludmila K, Katerina D, Arganbright KM, et al. Changes in hepatic cell junctions structure during experimental necrotizing enterocolitis: effect of EGF treatment. Pediatr Res. 2009;66:140‐144.
Urushima H, Yuasa H, Matsubara T, et al. Activation of hepatic stellate cells requires dissociation of E‐cadherin–containing adherens junctions with hepatocytes. Am J Pathol. 2021;191:438‐453.
Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1:a002899.
Srinivas CS, Singaraju GS, Kaur V, et al. Transient interactions drive the lateral clustering of cadherin‐23 on membrane. Commun Biol. 2023;6:293.
Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, Ben‐Shaul A. Cooperativity between trans and cis interactions in cadherin‐mediated junction formation. Proc Natl Acad Sci USA. 2010;107:17592‐17597.
Kim NG, Koh E, Chen X, Gumbiner BM. E‐cadherin mediates contact inhibition of proliferation through hippo signaling‐pathway components. Proc Natl Acad Sci USA. 2011;108:11930‐11935.
Gonzalez‐Sanchez E, Vaquero J, Fouassier L, Chignard N. E‐cadherin, guardian of liver physiology. Clin Res Hepatol Gastroenterol. 2015;39:3‐6.
Terada T, Ashida K, Kitamura Y, et al. Expression of epithelial‐cadherin, alpha‐catenin and beta‐catenin during human intrahepatic bile duct development: a possible role in bile duct morphogenesis. J Hepatol. 1998;28:263‐269.
Herr KJ, Tsang YHN, Ong JWE, et al. Loss of a‐catenin elicits a cholestatic response and impairs liver regeneration. Sci Rep. 2014;4:6835.
Monga SPS, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in wnt/β‐catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001;33:1098‐1109.
Nejak‐Bowen KN, Zeng G, Tan X, Cieply B, Monga SP. β‐Catenin regulates vitamin C biosynthesis and cell survival in murine liver. J Biol Chem. 2009;284:28115‐28127.
Sekine S, Lan BYA, Bedolli M, Feng S, Hebrok M. Liver‐specific loss of β‐catenin blocks glutamine synthesis pathway activity and cytochrome P450 expression in mice. Hepatology. 2006;43:817‐825.
Pradhan‐Sundd T, Liu S, Singh S, et al. Dual β‐catenin and γ‐catenin loss in hepatocytes impacts their polarity through altered transforming growth factor‐β and hepatocyte nuclear factor 4α signaling. Am J Pathol. 2021;191:885‐901.
van Hengel J, Van den Broeke C, Pieters T, et al. Inactivation of p120 catenin in mice disturbs intrahepatic bile duct development and aggravates liver carcinogenesis. Eur J Cell Biol. 2016;95:574‐584.
Nong CZ, Pan LL, He WS, Zha XL, Ye HH, Huang HY. P120ctn overexpression enhances β‐catenin‐E‐cadherin binding and down regulates expression of survivin and cyclin D1 in BEL‐7404 hepatoma cells. World J Gastroenterol. 2006;12:1187‐1191.
Harrison OJ, Brasch J, Lasso G, et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci USA. 2016;113:7160‐7165.
Green KJ, Roth‐Carter Q, Niessen CM, Nichols SA. Tracing the evolutionary origin of desmosomes. Curr Biol. 2020;30:535‐543.
Wang X, Nath A, Yang X, Portis A, Walton SP, Chan C. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells. PLoS One. 2011;6:e28138.
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564‐580.
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1:a002584.
Ahn C, Shin DH, Lee D, et al. Expression of claudins, occludin, junction adhesion molecule a and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697‐3703.
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta. 2008;1778:588‐600.
Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochim Biophys Acta. 2008;1778:601‐613.
Heinemann U, Schuetz A. Structural features of tight‐junction proteins. Int J Mol Sci. 2019;20:6020.
Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis‐associated colorectal cancer. Front Immunol. 2019;10:1441.
D'Souza T, Sherman‐Baust CA, Poosala S, Mullin JM, Morin PJ. Age‐related changes of claudin expression in mouse liver, kidney, and pancreas. J Gerontol A Biol Sci Med Sci. 2009;64:1146‐1153.
Baier FA, Sánchez‐Taltavull D, Yarahmadov T, et al. Loss of claudin‐3 impairs hepatic metabolism, biliary barrier function, and cell proliferation in the murine liver. Cell Mol Gastroenterol Hepatol. 2021;12:745‐767.
Hadj‐Rabia S, Baala L, Vabres P, et al. Claudin‐1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology. 2004;127(5):1386‐1390. doi:10.1053/j.gastro.2004.07.022. Erratum in: Gastroenterology. 2005 Feb;128(2):524.
Rahner C, Mitic LL, Anderson JM. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. 2001;120(2):411‐422. doi:10.1053/gast.2001.21736.
Furuse M, Hata M, Furuse K, et al. Claudin‐based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin‐1‐deficient mice. J Cell Biol. 2002;156(6):1099‐1111. doi:10.1083/jcb.200110122. Epub 2002 Mar 11.
Ramamoorthy S, Garg S, Mishra B, Radotra BD, Saikia UN. Coxsackievirus and adenovirus receptor (CAR) expression in autopsy tissues: organ‐specific patterns and clinical significance. Cureus. 2023;15:e37138.
Pinkert S, Röger C, Kurreck J, Bergelson JM, Fechner H. The coxsackievirus and adenovirus receptor: glycosylation and the extracellular D2 domain are not required for coxsackievirus B3 infection. J Virol. 2016;90:5601‐5610.
Bouchagier KA, Assimakopoulos SF, Karavias DD, et al. Expression of claudins‐1, ‐4, ‐5, ‐7 and occludin in hepatocellular carcinoma and their relation with classic clinicopathological features and patients’ survival. In Vivo. 2014;28:315‐326.
Patten DA, Wilson GK, Bailey D, et al. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: a new step in migration. Hepatology. 2017;65:294‐309.
Itoh M, Terada M, Sugimoto H. The zonula occludens protein family regulates the hepatic barrier system in the murine liver. Biochim Biophys Acta. 2021;1867:165994.
Xu J, Kausalya PJ, Van Hul N, et al. Protective functions of ZO‐2/Tjp2 expressed in hepatocytes and cholangiocytes against liver injury and cholestasis. Gastroenterology. 2021;160:2103‐2118.
Goodenough DA. Bulk isolation of mouse hepatocyte gap junctions. Characterization of the principal protein, connexin. J Cell Biol. 1974;61:557‐563.
Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer. 2016;16:775‐788.
Van Campenhout R, Gomes AR, De Groof TWM, et al. Mechanisms underlying connexin hemichannel activation in disease. Int J Mol Sci. 2021;22:3503.
Maes M, Decrock E, Cogliati B, et al. Connexin and pannexin (hemi)channels in the liver. Front Physiol. 2014;4:405.
Vinken M, Henkens T, De Rop E, et al. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology. 2008;47:1077‐1088.
Fowler SL, Akins M, Zhou H, Figeys D, Bennett SAL. The liver connexin32 interactome is a novel plasma membrane‐mitochondrial signaling nexus. J Proteome Res. 2013;12:2597‐2610.
Batissoco AC, Salazar‐Silva R, Oiticica J, Bento RF, Mingroni‐Netto RC, Haddad LA. A cell junctional protein network associated with connexin‐26. Int J Mol Sci. 2018;19:2535.
Flores CE, Li X, Bennett MVL, Nagy JI, Pereda AE. Interaction between connexin35 and zonula occludens‐1 and its potential role in the regulation of electrical synapses. Proc Natl Acad Sci USA. 2008;105:12545‐12550.
Hunter AW, Barker RJ, Zhu C, Gourdie RG. Zonula occludens‐1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell. 2005;16:5686‐5698.
Laing JG, Manley‐Markowski RN, Koval M, et al. Connexin45 interacts with zonula occludens‐1 in osteoblastic cells. Cell Commun Adhes. 2001;8:209‐212.
Li X, Heinzel FR, Boengler K, et al. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol. 2004;36:161‐163.
Rhett JM, Jourdan J, Gourdie RG. Connexin 43 connexon to gap junction transition is regulated by zonula occludens‐1. Mol Biol Cell. 2011;22:1516‐1528.
Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C‐terminal truncation. J Cell Sci. 2017;130:531‐540.
Singh D, Solan JL, Taffet SM, Javier R, Lampe PD. Connexin 43 interacts with zona occludens‐1 and ‐2 proteins in a cell cycle stage‐specific manner. J Biol Chem. 2005;280:30416‐30421.
Xu HT, Li QC, Zhang YX, et al. Connexin 43 recruits E‐cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol. 2008;46:315‐321.
Kren BT, Kumar NM, Wang SQ, Gilula NB, Steer CJ. Differential regulation of multiple gap junction transcripts and proteins during rat liver regeneration. J Cell Biol. 1993;123:707‐718.
Neveu MJ, Hully JR, Babcock KL, et al. Proliferation‐associated differences in the spatial and temporal expression of gap junction genes in rat liver. Hepatology. 1995;22:202‐212.
Temme A, Ott T, Dombrowski F, Willecke K. The extent of synchronous initiation and termination of DNA synthesis in regenerating mouse liver is dependent on connexin32 expressing gap junctions. J Hepatol. 2000;32:627‐635.
Traub O, Druge PM, Willecke K. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci USA. 1983;80:755‐759.
Koo SK, Kim DY, Park SD, Kang KW, Joe CO. PKC phosphorylation disrupts gap junctional communication at G0/S phase in clone 9 cells. Mol Cell Biochem. 1997;167:41‐49.
Zhang M, Thorgeirsson SS. Modulation of connexins during differentiation of oval cells into hepatocytes. Exp Cell Res. 1994;213:37‐42.
Kim D, Seo Y, Kwon S. Role of gap junction communication in hepatocyte/fibroblast co‐cultures: implications for hepatic tissue engineering. Biotechnol Bioprocess Eng. 2015;20:358‐365.
Stümpel F, Ott T, Willecke K, Jungermann K. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology. 1998;28:1616‐1620.
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. Biochim Biophys Acta. 2018;1865:1761‐1770.
Yang J, Ichikawa A, Tsuchiya T. A novel function of connexin 32: marked enhancement of liver function in a hepatoma cell line. Biochem Biophys Res Commun. 2003;307:80‐85.
Maes M, McGill MR, da Silva TC, et al. Involvement of connexin43 in acetaminophen‐induced liver injury. Biochim Biophys Acta. 2016;1862:1111‐1121.
Naiki‐Ito A, Asamoto M, Naiki T, et al. Gap junction dysfunction reduces acetaminophen hepatotoxicity with impact on apoptotic signaling and connexin 43 protein induction in rat. Toxicol Pathol. 2010;38:280‐286.
Cao Y, Xia Y, Wang Y, Shi H, Wu Y, Lu Y. MgIG attenuates oxaliplatin‐induced hepatotoxicity through suppression of connexin 43 in hepatic stellate cells. J Clin Transl Hepatol. 2023;11:584‐594.
Zou H, Yuan J, Zhang Y, et al. Gap junction intercellular communication negatively regulates cadmium‐induced autophagy and inhibition of autophagic flux in Buffalo rat liver 3A cells. Front Pharmacol. 2020;11:596046.
Pedroza M, To S, Smith J, et al. Cadherin‐11 contributes to liver fibrosis induced by carbon tetrachloride. Avila MA, editor. PLoS One. 2019;14:e0218971.
Wu B, Tian X, Wang W, et al. Upregulation of cadherin‐11 contributes to cholestatic liver fibrosis. Pediatr Investig. 2022;6:100‐110.
Ge WS, Wang YJ, Wu JX, et al. β‐Catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β‐catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep. 2014;9:2145‐2151.
Brozat JF, Brandt EF, Stark M, et al. JAM‐A is a multifaceted regulator in hepatic fibrogenesis, supporting LSEC integrity and stellate cell quiescence. Liver Int. 2022;42:1185‐1203.
Hintermann E, Bayer M, Conti CB, et al. Junctional adhesion molecules JAM‐B and JAM‐C promote autoimmune‐mediated liver fibrosis in mice. J Autoimmun. 2018;91:83‐96.
Benedicto I, Molina‐Jiménez F, Bartosch B, et al. The tight junction‐associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol. 2009;83:8012‐8020.
Shirasago Y, Shimizu Y, Tanida I, et al. Occludin‐knockout human hepatic Huh7.5.1‐8‐derived cells are completely resistant to hepatitis C virus infection. Biol Pharm Bull. 2016;39:839‐848.
Mensa L, Crespo G, Gastinger MJ, et al. Hepatitis C virus receptors claudin‐1 and occludin after liver transplantation and influence on early viral kinetics. Hepatology. 2011;53:1436‐1445.
Holczbauer Á, Gyöngyösi B, Lotz G, et al. Increased expression of claudin‐1 and claudin‐7 in liver cirrhosis and hepatocellular carcinoma. Pathol Oncol Res. 2014;20:493‐502.
Riad SE, Elhelw DS, Shawer H, et al. Disruption of claudin‐1 expression by miRNA‐182 alters the susceptibility to viral infectivity in HCV cell models. Front Genet. 2018;9:93.
Gijbels E, Vilas‐Boas V, Deferm N, et al. Mechanisms and in vitro models of drug‐induced cholestasis. Arch Toxicol. 2019;93:1169‐1186.
Cooreman A, Van Campenhout R, Crespo Yanguas S, et al. Cholestasis differentially affects liver connexins. Int J Mol Sci. 2020;21:6534.
González HE, Eugenín EA, Garcés G, et al. Regulation of hepatic connexins in cholestasis: possible involvement of Kupffer cells and inflammatory mediators. Am J Physiol Gastrointest Liver Physiol. 2002;282:991‐1001.
Boucherie S, Koukoui O, Nicolas V, Combettes L. Cholestatic bile acids inhibit gap junction permeability in rat hepatocyte couplets and normal rat cholangiocytes. J Hepatol. 2005;42:244‐251.
Van Campenhout R, Yanguas SC, Cooreman A, et al. Increased expression of adherens junction components in mouse liver following bile duct ligation. Biomolecules. 2019;9:636.
Zhou L, Pradhan‐Sundd T, Poddar M, et al. Mice with hepatic loss of the desmosomal protein γ‐catenin are prone to cholestatic injury and chemical carcinogenesis. Am J Pathol. 2015;185:3274‐3289.
Okabe H, Yang J, Sylakowski K, et al. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology. 2016;64:1652‐1666.
Li H, Chen X, Zhang F, Ma J, Xu C. Expression patterns of the cell junction‐associated genes during rat liver regeneration. J Genet Genomics. 2007;34:892‐908.
Glück U, Fernández JR, Pankov R, et al. Regulation of adherens junction protein expression in growth‐activated 3T3 cells and in regenerating liver. Exp Cell Res. 1992;202:477‐486.
Mottino AD, Hoffman T, Crocenzi FA, Sánchez Pozzi EJ, Roma MG, Vore M. Disruption of function and localization of tight junctional structures and Mrp2 in sustained estradiol‐17β‐D‐glucuronide‐induced cholestasis. Am J Physiol. 2007;293:391‐402.
Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542‐1556.
Sagawa H, Naiki‐Ito A, Kato H, et al. Connexin 32 and luteolin play protective roles in nonalcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis. 2015;36:1539‐1549.
Luther J, Gala MK, Borren N, et al. Hepatic connexin 32 associates with nonalcoholic fatty liver disease severity. Hepatol Commun. 2018;2:786‐797.
Rahman K, Desai C, Iyer SS, et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733‐746.
Hempel M, Schmitz A, Winkler S, et al. Pathological implications of cadherin zonation in mouse liver. Cell Mol Life Sci. 2015;72:2599‐2612.
Ding Z, Shi C, Jiang L, et al. Oncogenic dependency on β‐catenin in liver cancer cell lines correlates with pathway activation. Oncotarget. 2017;8:114526‐114539.
Bisso A, Filipuzzi M, Gamarra Figueroa GP, et al. Cooperation between MYC and β‐catenin in liver tumorigenesis requires Yap/Taz. Hepatology. 2020;72:1430‐1443.
Dai W, Shen J, Yan J, et al. Glutamine synthetase limits β‐catenin‐mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest. 2022;132:161408.
Liu F, Gai X, Wu Y, et al. Oncogenic β‐catenin stimulation of AKT2‐CAD‐mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci USA. 2022;119:2202157119.
Longerich T, Endris V, Neumann O, et al. RSPO2 gene rearrangement: a powerful driver of β‐catenin activation in liver tumours. Gut. 2019;68:1287‐1296.
Tao J, Calvisi DF, Ranganathan S, et al. Activation of β‐catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014;147:690‐701.
Wei LH, Dong Y, Sun YF, et al. Anticancer property of hemp bioactive peptides in Hep3B liver cancer cells through Akt/GSK3β/β‐catenin signaling pathway. Food Sci Nutr. 2021;9:1833‐1841.
Zulehner G, Mikula M, Schneller D, et al. Nuclear β‐catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am J Pathol. 2010;176:472‐481.
Maeda S, Nakagawa H. Roles of E‐cadherin in hepatocarcinogenesis. Innovative Medicine: Basic Research and Development [Internet]. Springer; 2015:71‐77.
Nakagawa H, Hikiba Y, Hirata Y, et al. Loss of liver E‐cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proc Natl Acad Sci USA. 2014;111:1090‐1095.
Schneider MR, Hiltwein F, Grill J, et al. Evidence for a role of E‐cadherin in suppressing liver carcinogenesis in mice and men. Carcinogenesis. 2014;35:1855‐1862.
He B, Guo L, Hu Y, et al. Desmocollin‐2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma via the ERK/c‐MYC signaling pathway. Aging (Albany NY). 2022;14:8805‐8817.
Han CP, Yu YH, Wang AG, et al. Desmoglein‐2 overexpression predicts poor prognosis in hepatocellular carcinoma patients. Eur Rev Med Pharmacol Sci. 2018;22:5481‐5489.
Yoon CH, Kim MJ, Park MJ, et al. Claudin‐1 acts through c‐Abl‐protein kinase Cδ (PKCδ) signaling and has a causal role in the acquisition of invasive capacity in human liver cells. J Biol Chem. 2010;285:226‐233.
Liu H, Wang M, Liang N, et al. Claudin‐9 enhances the metastatic potential of hepatocytes via Tyk2/Stat3 signaling. Turk J Gastroenterol. 2019;30:722‐731.
Ram AK, Pottakat B, Vairappan B. Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma. BMC Cancer. 2018;18:572.
Zhang X, Wang L, Zhang H, Tu F, Qiang Y, Nie C. Decreased expression of ZO‐1 is associated with tumor metastases in liver cancer. Oncol Lett. 2019;17:1859‐1864.
Sonoi R, Hagihara Y. Tight junction stabilization prevents HepaRG cell death in drug‐induced intrahepatic cholestasis. Biol Open. 2021;10:bio058606.
Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SPS. Conditional deletion of β‐catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131:1561‐1572.
Roehlen N, Muller M, Nehme Z, et al. Treatment of HCC with claudin‐1‐specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment. J Hepatol. 2023;78:343‐355.
Assimakopoulos SF, Akinosoglou K, de Lastic AL, Skintzi A, Mouzaki A, Gogos CA. The prognostic value of endotoxemia and intestinal barrier biomarker ZO‐1 in bacteremic sepsis. Am J Med Sci. 2020;359(2):100‐107. doi:10.1016/j.amjms.2019.10.006. Epub 2019 Oct 22.
Olsson A, Gustavsen S, Langkilde AR, et al. Circulating levels of tight junction proteins in multiple sclerosis: association with inflammation and disease activity before and after disease modifying therapy. Mult Scler Relat Disord. 2021;54:103136. doi:10.1016/j.msard.2021.103136. Epub 2021 Jul 3.
Tang J, Tan M, Deng Y, et al. Two novel pathogenic variants of TJP2 gene and the underlying molecular mechanisms in progressive familial intrahepatic cholestasis type 4 patients. Front Cell Dev Biol. 2021;9:661599.
Wei CS, Becher N, Blechingberg J, et al. New tight junction protein 2 variant causing progressive familial intrahepatic cholestasis type 4 in adults: a case report. World J Gastroenterol. 2020;26:550‐561.
Mitra‐Kaushik S, Mehta‐Damani A, Stewart JJ, Green C, Litwin V, Gonneau C. The evolution of single‐cell analysis and utility in drug development. AAPS J. 2021;23(5):98. doi:10.1208/s12248-021-00633-6.
Van de Sande B, Lee JS, Mutasa‐Gottgens E, et al. Applications of single‐cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 2023;22(6):496‐520. doi:10.1038/s41573-023-00688-4. Epub 2023 Apr 28.
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single‐cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694. doi:10.1002/ctm2.694.
Cooreman A, Van Campenhout R, Ballet S, et al. Connexin and pannexin (hemi)channels: emerging targets in the treatment of liver disease. Hepatology. 2019;69:1317‐1323.
Yang L, Dong C, Tian L, Ji X, Yang L, Li L. Gadolinium chloride restores the function of the gap junctional intercellular communication between hepatocytes in a liver injury. Int J Mol Sci. 2019;20:3748.
Maes M, Crespo Yanguas S, Willebrords J, et al. Connexin hemichannel inhibition reduces acetaminophen‐induced liver injury in mice. Toxicol Lett. 2017;278:30‐37.
Willebrords J, Cogliati B, Pereira IVA, et al. Inhibition of connexin hemichannels alleviates non‐alcoholic steatohepatitis in mice. Sci Rep. 2017;7:8268.
Crespo Yanguas S, da Silva TC, Pereira IVA, et al. TAT‐Gap19 and carbenoxolone alleviate liver fibrosis in mice. Int J Mol Sci. 2018;19:817.
Paštar V, Lozić M, Kelam N, et al. Connexin expression is altered in liver development of yotari (Dab1 −/−) mice. Int J Mol Sci. 2021;22:10712.
Lukowicz‐Bedford RM, Farnsworth DR, Miller AC. Connexinplexity: the spatial and temporal expression of connexin genes during vertebrate organogenesis. G3 (Bethesda). 2022;12(5):jkac062. doi:10.1093/g3journal/jkac062.
Moscato S, Cabiati M, Bianchi F, et al. Heart and liver connexin expression related to the first stage of aging: a study on naturally aged animals. Acta Histochem. 2020;122(8):151651. doi:10.1016/j.acthis.2020.151651. Epub 2020 Nov 7.
Jones SA, Lancaster MK, Boyett MR. Ageing‐related changes of connexins and conduction within the sinoatrial node. J Physiol. 2004;560(Pt 2):429–437.
Hintermann E, Christen U. The many roles of cell adhesion molecules in hepatic fibrosis. Cells. 2019;8:1503.
Mahati S, Xiao L, Yang Y, Mao R, Bao Y. miR‐29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1. Biochem Biophys Res Commun. 2017;486:732‐737.
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther. 2017;180:144‐160.
Van Campenhout R, Muyldermans S, Vinken M, et al. Therapeutic nanobodies targeting cell plasma membrane transport proteins: a high‐risk/high‐gain endeavor. Biomolecules. 2021;11:63.
Cooreman A, Caufriez A, Tabernilla A, et al. Effects of drugs formerly proposed for COVID‐19 treatment on connexin43 hemichannels. Int J Mol Sci. 2022;23:5018.
Caufriez A, Böck D, Martin C, Ballet S, Vinken M. Peptide‐based targeting of connexins and pannexins for therapeutic purposes. Expert Opin Drug Discov. 2020;15:1213‐1222.
El‐Azab DS, Ayad HA, Abdelnaby AS, et al. Immunohistochemical expression of cadherin‐17 in normal and nonmalignant liver tissues. Menoufia Med J. 2016;29:971‐978.
Ikawa‐Yoshida A, Matsumoto T, Okano S, et al. BubR1 insufficiency impairs liver regeneration in aged mice after hepatectomy through intercalated disc abnormality. Sci Rep. 2016;6:32399.
Cao Y, Chang H, Li L, Cheng RC, Fan XN. Alteration of adhesion molecule expression and cellular polarity in hepatocellular carcinoma. Histopathology. 2007;51:528‐538.
Uribe D, Cardona A, Esposti DD, et al. Antiproliferative effects of epigenetic modifier drugs through E‐cadherin up‐regulation in liver cancer cell lines. Ann Hepatol. 2018;17:444‐460.
Calvisi DF, Ladu S, Conner EA, Factor VM, Thorgeirsson SS. Disregulation of E‐cadherin in transgenic mouse models of liver cancer. Lab Investig. 2004;84:1137‐1147.
Wickline ED, Awuah PK, Behari J, Ross M, Stolz DB, Monga SPS. Hepatocyte γ‐catenin compensates for conditionally deleted β‐catenin at adherens junctions. J Hepatol. 2011;55:1256‐1262.
Govindarajan R, Chakraborty S, Johnson KE, et al. Assembly of connexin43 into gap junctions is regulated differentially by E‐cadherin and N‐cadherin in rat liver epithelial cells. Mol Biol Cell. 2010;21:4089‐4107.
Rey E, Meléndez‐Rodríguez F, Marañón P, et al. Hypoxia‐inducible factor 2α drives hepatosteatosis through the fatty acid translocase CD36. Liver Int. 2020;40:2553‐2567.
Zhang Y, Clay D, Mitjavila‐Garcia MT, et al. VE‐cadherin and ACE co‐expression marks highly proliferative hematopoietic stem cells in human embryonic liver. Stem Cells Dev. 2019;28:165‐185.
Cai H, Chen Y, Yang X, et al. Let7b modulates the Wnt/β‐catenin pathway in liver cancer cells via downregulated Frizzled4. Tumour Biol. 2017;39:1‐7.
Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ‐catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84.
Au KY, Lo RCL. An immunohistochemical study of β‐catenin expression and immune cell population in metastatic carcinoma to the liver. Pathol Oncol Res. 2021;27:1609752.
Enooku K, Kondo M, Fujiwara N, et al. Hepatic IRS1 and ß‐catenin expression is associated with histological progression and overt diabetes emergence in NAFLD patients. J Gastroenterol. 2018;53:1261‐1275.
Muranushi R, Araki K, Harimoto N, et al. Unclassified hepatocellular adenoma with beta‐catenin mutation: a case report. Surg Case Rep. 2021;7:4‐9.
Qiao Y, Xu M, Tao J, et al. Oncogenic potential of N‐terminal deletion and S45Y mutant β‐catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer. 2018;18:1093.
Tao GZ, Lehwald N, Jang KY, et al. Wnt/β‐catenin signaling protects mouse liver against oxidative stress‐induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem. 2013;288:17214‐17224.
Apte U, Singh S, Zeng G, et al. Beta‐catenin activation promotes liver regeneration after acetaminophen‐induced injury. Am J Pathol. 2009;175:1056‐1065.
Cabral RM, Wan H, Cole CL, Abrams DJ, Kelsell DP, South AP. Identification and characterization of DSPIa, a novel isoform of human desmoplakin. Cell Tissue Res. 2010;341:121‐129.
Gross A, Zhou B, Bewersdorf L, et al. Desmoplakin maintains transcellular keratin scaffolding and protects from intestinal injury. Cell Mol Gastroenterol Hepatol. 2022;13:1181‐1200.
Choi SS, Witek RP, Yang L, et al. Activation of Rac1 promotes hedgehog‐mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology. 2010;52:278‐290.
Jeannet G, Scheller M, Scarpellino L, et al. Long‐term, multilineage hematopoiesis occurs in the combined absence of β‐catenin and γ‐catenin. Blood. 2008;111:142‐149.
Tong H, Li T, Qiu W, Zhu Z. Claudin‐1 silencing increases sensitivity of liver cancer HepG2 cells to 5‐fluorouracil by inhibiting autophagy. Oncol Lett. 2019;18:5709‐5716.
Harris HJ, Farquhar MJ, Mee CJ, et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol. 2008;82:5007‐5020.
Tsujiwaki M, Murata M, Takasawa A, et al. Aberrant expression of claudin‐4 and ‐7 in hepatocytes in the cirrhotic human liver. Med Mol Morphol. 2015;48:33‐43.
Ma R, Martínez‐Ramírez AS, Borders TL, Gao F, Sosa‐Pineda B. Metabolic and non‐metabolic liver zonation is established non‐synchronously and requires sinusoidal Wnts. elife. 2020;9:e46206.
Lopez‐Gordo E, Doszpoly A, Duffy MR, et al. Defining a novel role for the coxsackievirus and adenovirus receptor in human adenovirus serotype 5 transduction in vitro in the presence of mouse serum. McFadden G, editor. J Virol. 2017;91:e02487‐16.
Yang XUE, Li S, Wang H, Chen W, Mou X, Wang S. Expression of coxsackie and adenovirus receptor is correlated with inferior prognosis in liver cancer patients. Oncol Lett. 2019;17:2485‐2490.
Yang Y, Zhu J, Zhang N, et al. Impaired gap junctions in human hepatocellular carcinoma limit intrinsic oxaliplatin chemosensitivity: a key role of connexin 26. Int J Oncol. 2016;48:703‐713.
Li Y, Yang L, Tao R, et al. The expression of connexin 26 regulates the radiosensitivity of hepatocellular carcinoma cells through a mitogen‐activated protein kinases signal pathway. Int J Mol Sci. 2022;23:14644.
Xiang Y, Wang Q, Guo Y, et al. Cx32 exerts anti‐apoptotic and pro‐tumor effects via the epidermal growth factor receptor pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38:145.
Bowe A, Zweerink S, Mück V, et al. Depolarized hepatocytes express the stem/progenitor cell marker neighbor of punc E11 after bile duct ligation in mice. J Histochem Cytochem. 2018;66:563‐576.
Kojima T, Fort A, Tao M, Yamamoto M, Spray DC. Gap junction expression and cell proliferation in differentiating cultures of Cx43 KO mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2001;281:1004‐1013.
Zhang J, Grindstaff RD, Thai SF, Murray SA, Kohan M, Blackman CF. Chloral hydrate decreases gap junction communication in rat liver epithelial cells. Cell Biol Toxicol. 2011;27:207‐216.
Kojima T, Sawada N, Oyamada M, Chiba H, Isomura H, Mori M. Rapid appearance of connexin 26‐positive gap junctions in centrilobular hepatocytes without induction of mRNA and protein synthesis in isolated perfused liver of female rat. J Cell Sci. 1994;107:3579‐3590.
Nakashima Y, Ono T, Yamanoi A, el‐Assal ON, Kohno H, Nagasue N. Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol. 2004;39:763‐768.
Correa PRAV, Guerra MT, Leite MF, Spray DC, Nathanson MH. Endotoxin unmasks the role of gap junctions in the liver. Biochem Biophys Res Commun. 2004;322:718‐726.
Rodrigues A d S, Dagli MLZ, Avanzo JL, et al. Expression and distribution of connexin 32 in rat liver with experimentally induced fibrosis. Pesq Vet Bras. 2009;29:353‐357.
Tirosh A, Tuncman G, Calay ES, et al. Intercellular transmission of hepatic ER stress in obesity disrupts systemic metabolism. Cell Metab. 2021;33:319‐333.
Shen Y, Li Y, Ma X, et al. Connexin 43 SUMOylation improves gap junction functions between liver cancer stem cells and enhances their sensitivity to HSVtk/GCV. Int J Oncol. 2018;52:872‐880.
Pei H, Zhai C, Li H, et al. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes. Stem Cell Res Ther. 2017;8:252.
Balasubramaniyan V, Dhar DK, Warner AE, et al. Importance of connexin‐43 based gap junction in cirrhosis and acute‐on‐chronic liver failure. J Hepatol. 2013;58:1194‐1200.
Moreno AP, Laing JG, Beyer EC, Spray DC. Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am J Physiol. 1995;268:356‐365. - Grant Information: 858014 European Horizon 2020 Future and Emerging Technologies program; G012318N Research Foundation Flanders-Belgium; G020018N Research Foundation Flanders-Belgium; G0F7219N Research Foundation Flanders-Belgium; the Methusalem program of the Flemish Government; the University Hospital of the Vrije Universiteit Brussel-Belgium (Scientific Fund Willy Gepts)
- Contributed Indexing: Keywords: adherens junctions; desmosomes; gap junctions; liver; tight junctions
- Publication Date: Date Created: 20240808 Date Completed: 20241023 Latest Revision: 20241023
- Publication Date: 20241023
- Accession Number: 10.1111/liv.16045
- Accession Number: 39115254
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.