Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Chondroitin/dermatan sulphate proteoglycan, desmosealin, showing affinity to desmosomes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Laperdrix C;Laperdrix C; Duhieu S; Duhieu S; Haftek M; Haftek M
- Source:
International journal of cosmetic science [Int J Cosmet Sci] 2024 Aug; Vol. 46 (4), pp. 494-505.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 8007161 Publication Model: Print Cited Medium: Internet ISSN: 1468-2494 (Electronic) Linking ISSN: 01425463 NLM ISO Abbreviation: Int J Cosmet Sci Subsets: MEDLINE
- Publication Information: Publication: 2000- : Oxford : Blackwell Science Ltd.
Original Publication: [Oxford, Blackwell Scientific Publications.] - Subject Terms:
- Abstract: Objective: Desmosomes are the most prominent interkeratinocyte junctions. The correct barrier function of stratified epithelia such as epidermis depends on their expression. During epidermal differentiation, the molecular composition of desmosomes evolves and so do their physical and chemical properties. Desquamation of corneocytes at the surface of the stratum corneum depends on an orderly degradation of desmosomes by endogenous enzymes. This process may be regulated by glycosylated molecules. We focused on the detection and characterization of potentially implicated players bearing ‘sugar’ characteristics.
Methods: Using an original monoclonal antibody and biochemical methods, we partially characterized a proteoglycan of the exclusively chondroitin/dermatan sulphate type, secreted into the interkeratinocyte spaces, that is incorporated into the extracellular parts of desmosomes in quantities proportional to the degree of cell differentiation, as visualized with immuno-electron microscopy.
Results: This antigen, that we named desmosealin, displays biochemical and immunocytochemical characteristics that clearly differentiate it from known desmosomal elements. Unlike so far described epidermal proteoglycans, which belong to the heparan sulphate family, desmosealin displays chondroitin/dermatan sulphate glycosaminoglycan chains. It can be detected within the extracellular ‘cores’ of desmosomes in the upper viable epidermal layers and in corneodesmosomes from the lowermost part of the stratum corneum.
Conclusion: Extensive integration of proteoglycans into the extracellular parts of desmosomes at the late stages of keratinocyte maturation is likely of functional importance. Given its biochemical profile, its pattern of expression in the epidermis and its desmosomal localization, desmosealin may emerge as a key element in the regulation of desmosome processing, epidermal cohesion and formation of a functional epidermal barrier.
(© 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.) - Comments: Erratum in: Int J Cosmet Sci. 2024 Sep 10. doi: 10.1111/ics.13026. (PMID: 39256194)
- References: Lefèvre‐Utile A, Braun C, Haftek M, Aubin F. Five functional aspects of the epidermal barrier. Int J Mol Sci. 2021;22:11676.
Haftek M. Stratum corneum histopathology. In: Humbert P, Fanian F, editors. Measuring the skin. 2nd ed. Berlin: Springer; 2016. p. 245–254.
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta. 2014;1841:280–294.
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: an extraordinary interface with an exceptional lipid organization. Progr Lipid Res. 2023;92:101252.
Haftek M, Simon M, Serre G. Corneodesmosomes: pivotal actors in the stratum corneum cohesion and desquamation. In: Finegold K, Elias PM, editors. The stratum corneum barrier. New York, NY: Taylor and Francis; 2005. p. 171–190.
Haftek M, Dragomir A. Cell junctions. In: Stirling JW, Wagner B, editors. Ghadially's ultrastructural pathology of the cell and matrix. London: Taylor and Francis; 2024.
Haftek M, Teillon MH, Schmitt D. Stratum corneum, corneodesmosomes, and ex‐vivo percutaneous penetration. Microsc Res Techn. 1998;43:1–8.
Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–353.
Ishida‐Yamamoto A, Igawa S, Kishibe M, Honma M. Clinical and molecular implications of structural changes to desmosomes and corneodesmosomes. J Dermatol. 2018;45:385–389.
Haftek M, Oji V, Feldmeyer L, Hohl D, Hadj‐Rabia S, Abdayem R. The fate of epidermal tight junctions in the stratum corneum: their involvement in the regulation of desquamation and phenotypic expression of certain skin conditions. Int J Mol Sci. 2022;23:7486.
Komatsu N, Takata M, Otsuki N, Ohka R, Amano O, Takehara K, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5‐derived peptides. J Invest Dermatol. 2002;118:436–443.
Zeeuwen PL, van Vlijmen‐Willems IM, Jansen BJ, Sotiropoulou G, Curfs JH, Meis JF, et al. Cystatin M/E expression is restricted to differentiated epidermal keratinocytes and sweat glands: a new skin‐specific proteinase inhibitor that is a target for cross‐linking by transglutaminase. J Invest Dermatol. 2001;116:693–701.
Walsh A, Chapman SJ. Sugars protect desmosome and corneosome glycoproteins from proteolysis. Arch Dermatol Res. 2004;283:174–179.
Brown KW, Parkinson EK. Glycoproteins and glycosaminoglycans of cultured normal human epidermal keratinocytes. J Cell Sci. 1983;61:325–338.
Haggerty JG, Bretton RH, Milstone LM. Identification and characterization of a cell surface proteoglycan on keratinocytes. J Invest Dermatol. 1992;99:374–380.
Oksala O, Salo T, Tammi R, Häkkinen L, Jalkanen M, Inki P, et al. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem. 1995;43:125–135.
Tuhkanen AL, Tammi M, Pelttari A, Agren UM, Tammi R. Ultrastructural analysis of human epidermal CD44 reveals preferential distribution on plasma membrane domains facing the hyaluronan‐rich matrix pouches. J Histochem Cytochem. 1998;46:241–248.
Noblesse E, Cenizo V, Bouez C, Borel A, Gleyzal C, Peyrol S, et al. Lysyl oxidase‐like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J Invest Dermatol. 2004;122:621–630.
Kugelman LC, Ganguly S, Haggerty JG, Weissman SM, Milestone LM. The core protein of epican, a heparan sulfate proteoglycan on keratinocytes, is an alternative form of CD44. J Invest Dermatol. 1992;99:381–385.
Sanderson RD, Hinkes MT, Bernfield M. Syndecan‐1, a cell‐surface proteoglycan, changes in size and abundance when keratinocytes stratify. J Invest Dermatol. 1992;99:390–396.
Lundqvist K, Schmidtchen A. Immunohistochemical studies on proteoglycan expression in normal skin and chronic ulcers. Br J Dermatol. 2001;144:254–259.
Peltonen S, Hentula M, Hagg P, Yla‐Outinen H, Tuukkanen J, Lakkakorpi J, et al. A novel component of epidermal cell‐matrix and cell–cell contacts: transmembrane protein type XIII collagen. J Invest Dermatol. 1999;113:635–642.
Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature's biological glues. Biochem J. 2002;368:377–396.
Mariotti F, Castiglia D, Zambruno G, Mastrogiacomo A. Coloning of a novel antigen of paraneoplastic pemphigus that exhibits a domain organization similar to membrane –bound serine proteases. J Invest Dermatol. 2005;125:A12.
Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–652.
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.
Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393.
Liu W, Litwack ED, Stanley MJ, Langford JK, Lander A, Sanderson RD. Heparan sulfate proteoglycans as adhesive and anti‐invasive molecules. J Biol Chem. 1998;273:22825–22832.
Haftek M, Viac J, Schmitt D, Gaucherand M, Thivolet J. Ultrastructural quantitation of desmosome and differentiation ‐related keratinocyte membrane antigen. Arch Dermatol Res. 1986;278:283–292.
Haftek M, Serre G, Mils V, Thivolet J. Immunocytochemical evidence for a possible role of cross‐linked keratinocyte envelopes in stratum corneum cohesion. J Histochem Cytochem. 1991;39:1531–1538.
Haftek M, Simon M, Kanitakis J, Maréchal S, Claudy A, Serre G, et al. Expression of corneodesmosin in the granular layer and stratum corneum of normal and diseased epidermis. Br J Dermatol. 1997;137:864–873.
Suzuki H, Horii M, Miyamoto R, Ishikawa K, Inoue K, Tanaka S. Subcellular distribution of 220 kDa antigen in the intercellular spaces of normal human epidermis. Arch Dermatol Res. 1997;289:360–366.
Mehul B, Bernard D, Simonetti L, Bernard MA, Schmidt R. Identification and cloning of a new calmodulin‐like protein from human epidermis. J Biol Chem. 2000;275:12841–12847.
Hudson DL, Sleeman J, Watt FM. CD44 is the major peanut lectin‐binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J Cell Sci. 1995;108:1959–1970.
Herbold KW, Zhou J, Haggerty JG, Milstone LM. CD44 expression on epidermal melanocytes. J Invest Dermatol. 1996;106:1230–1235.
Carrino DA, Sorrell JM, Caplan AI. Age‐related changes in the proteoglycans of human skin. Arch Bioch Biophys. 2000;373:91–101.
Milstone LM, Hough‐Monroe L, Kugelman LC, Bender JR, Haggerty JG. Epican, a heparan/chondroitin sulfate proteoglycan form of CD44, mediates cell–cell adhesion. J Cell Sci. 1994;107:3183–3190.
Ekholm E, Brattsand M, Egelrud T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process. J Invest Dermatol. 2000;114:56–63.
Jonca N, Guerrin M, Hadjiolova K, Caubet C, Gallinaro H, Simon M, et al. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem. 2002;277:5024–5029.
Simon M, Jonca N, Guerrin M, Haftek M, Bernard D, Caubet C, et al. Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem. 2001;276:20292–20299.
Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol. 2004;122:1235–1244.
Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida‐Yamamoto A, et al. Spink5‐deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37:56–65.
Fluhr JW, Mao‐Qiang M, Brown BE, Hachem JP, Moskowitz DG, Demerjian M, et al. Functional consequences of a neutral pH in neonatal rat stratum corneum. J Invest Dermatol. 2004;123:140–151. - Contributed Indexing: Keywords: cell–cell junctions; differentiation; epidermis; intercellular matrix; skin barrier; skin physiology/structure
Local Abstract: [Publisher, French] Les desmosomes sont les jonctions inter‐kératinocytaires les plus proéminentes. Le fonctionnement appropriée des épithéliums stratifiés comme épiderme dépend de leur expression. La composition moléculaire et les propriétés physico‐chimiques des desmosomes évoluent au cours de la différenciation épidermique. La desquamation de cornéocytes la surface du stratum corneum depend de la dégradation ordonnée des desmosomes par les enzymes endogènes. Ce processus peut être régulé par les molécules glycosylées. Notre travail consistait en détection et caractérisation de l'un des acteurs potentiellement impliqués, portant des chaînes carbohydrate. [Publisher, French] Les approches d'analyse biochimique s'appuyant sur un anticorps monoclonal original (immunotransfert mono‐et bi‐dimensionnel, immunoprécipitation–immunodétection croisées, digestions enzymatiques, tests de déglycosylation et d'inhibition de synthèse) nous ont permis la caractérisation partielle d'un protéoglycanne sécrété dans les espaces inter‐kératinocytaires. Cette molécule s'intègre aux desmosomes en quantités proportionnelles au stade de différenciation des kératinocytes, comme le démontrent les marquages ultrastructuraux à l'or colloïdal sur des cryocoupes et tissus enrobés en résines acryliques. [Publisher, French] Cet antigène, que nous avons appelé desmosealine, est clairement distinct des éléments constitutifs de desmosomes décrits jusqu'alors. Contrairement aux protéoglycannes épidermiques connus, il porte exclusivement les chaînes glycosaminoglycannes de type chondroïtine/dermatane sulfate. La desmosealine est présente dans les parties extracellulaires de desmosomes, dans la portion supérieure de l‘épiderme vivant et le début du stratum corneum. [Publisher, French] L'intégration massive d'un protéoglycanne dans des parties intercellulaires de desmosomes revêt vraisemblablement une importance fonctionnelle. De par son profile biochimique, sa distribution dans l'épiderme et son affinité pour les desmosomes, le desmosealine peut s'avérer être un élément clé dans la régulation de la cohésion interkératinocytaire et la formation de la barrière de perméabilité épidermique. - Accession Number: 9007-27-6 (Chondroitin)
0 (Chondroitin Sulfate Proteoglycans) - Publication Date: Date Created: 20240808 Date Completed: 20240808 Latest Revision: 20240910
- Publication Date: 20240911
- Accession Number: 10.1111/ics.12954
- Accession Number: 39113319
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.