Revisiting the full blood count: Circulating blood cells and their role in coagulation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 0372544 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2141 (Electronic) Linking ISSN: 00071048 NLM ISO Abbreviation: Br J Haematol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley-Blackwell
      Original Publication: Oxford : Blackwell Scientific Publications
    • Subject Terms:
    • Abstract:
      There has been an expansion in our understanding of the multifaceted roles of circulating blood cells in regulating haemostasis and contributing to thrombosis. Notably, there is greater recognition of the interplay between coagulation with inflammation and innate immune activation and the contribution of leucocytes. The full blood count (FBC) is a time-honoured test in medicine; however, its components are often viewed in isolation and without consideration of their haemostatic and thrombotic potential. Here, we review how the individual components of the FBC, that is, haemoglobin, platelets and leucocytes, engage with the haemostatic system and focus on both their quantitative and qualitative attributes. We also explore how this information can be harnessed into better management of people with multiple long-term conditions because of their higher risk of adverse clinical events.
      (© 2024 The Author(s). British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.)
    • References:
      Yong J, Toh CH. Rethinking coagulation: from enzymatic cascade and cell‐based reactions to a convergent model involving innate immune activation. Blood. 2023;142:2133–2145. https://doi.org/10.1182/blood.2023021166.
      Yong J, Toh CH. The convergent model of coagulation. J Thromb Haemost. 2024;22:2140–2146. https://doi.org/10.1016/j.jtha.2024.05.014.
      Thakar S, Gabarin N, Gupta A, Radford M, Warkentin TE, Arnold DM. Anemia‐induced bleeding in patients with platelet disorders. Transfus Med Rev. 2021;35:22–28. https://doi.org/10.1016/j.tmrv.2021.06.001.
      Blajchman MA, Bordin JO, Bardossy L, Heddle NM. The contribution of the haematocrit to thrombocytopenic bleeding in experimental animals. Br J Haematol. 1994;86:347–350. https://doi.org/10.1111/j.1365‐2141.1994.tb04737.x.
      Ho CH. The hemostatic effect of packed red cell transfusion in patients with anemia. Transfusion. 1998;38:1011–1014. https://doi.org/10.1046/j.1537‐2995.1998.38111299056308.x.
      Peterson P, Hayes TE, Arkin CF, Bovill EG, Fairweather RB, Rock WA Jr, et al. The preoperative bleeding time test lacks clinical benefit: College of American Pathologists' and American Society of Clinical Pathologists' position article. Arch Surg. 1998;133:134–139. https://doi.org/10.1001/archsurg.133.2.134.
      Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316:2025–2035. https://doi.org/10.1001/jama.2016.9185.
      Carson JL, Stanworth SJ. Anemia and bleeding in thrombocytopenic patients. Blood. 2017;130:1178–1179. https://doi.org/10.1182/blood‐2017‐07‐795922.
      Uhl L, Assmann SF, Hamza TH, Harrison RW, Gernsheimer T, Slichter SJ. Laboratory predictors of bleeding and the effect of platelet and RBC transfusions on bleeding outcomes in the PLADO trial. Blood. 2017;130:1247–1258. https://doi.org/10.1182/blood‐2017‐01‐757930.
      Webert K, Cook RJ, Sigouin CS, Rebulla P, Heddle NM. The risk of bleeding in thrombocytopenic patients with acute myeloid leukemia. Haematologica. 2006;91:1530–1537.
      Radford M, Estcourt LJ, Sirotich E, Pitre T, Britto J, Watson M, et al. Restrictive versus liberal red blood cell transfusion strategies for people with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without haematopoietic stem cell support. Cochrane Database Syst Rev. 2024;5:Cd011305. https://doi.org/10.1002/14651858.CD011305.pub3.
      Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM, Claveria V, et al. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci USA. 2016;113:13289–13294. https://doi.org/10.1073/pnas.1608074113.
      Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Phys. 1992;263:H1770–H1778. https://doi.org/10.1152/ajpheart.1992.263.6.H1770.
      Piety NZ, Reinhart WH, Pourreau PH, Abidi R, Shevkoplyas SS. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network. Transfusion. 2016;56:844–851. https://doi.org/10.1111/trf.13449.
      Folsom AR, Wang W, Parikh R, Lutsey PL, Beckman JD, Cushman M. Hematocrit and incidence of venous thromboembolism. Res Pract Thromb Haemost. 2020;4:422–428. https://doi.org/10.1002/rth2.12325.
      Warny M, Helby J, Birgens HS, Bojesen SE, Nordestgaard BG. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J Thromb Haemost. 2019;17:1898–1911. https://doi.org/10.1111/jth.14574.
      Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood. 2012;120:3837–3845. https://doi.org/10.1182/blood‐2012‐05‐427856.
      Walton BL, Lehmann M, Skorczewski T, Holle LA, Beckman JD, Cribb JA, et al. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood. 2017;129:2537–2546. https://doi.org/10.1182/blood‐2016‐10‐746479.
      Landolfi R, di Gennaro L, Barbui T, de Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–2452. https://doi.org/10.1182/blood‐2006‐08‐042515.
      Gerds AT, Mesa R, Burke JM, Grunwald MR, Stein BL, Squier P, et al. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: analysis from REVEAL. Blood. 2024;143:1646–1655. https://doi.org/10.1182/blood.2023020232.
      Gangaraju R, Song J, Kim SJ, Tashi T, Reeves BN, Sundar KM, et al. Thrombotic, inflammatory, and HIF‐regulated genes and thrombosis risk in polycythemia vera and essential thrombocythemia. Blood Adv. 2020;4:1115–1130. https://doi.org/10.1182/bloodadvances.2019001379.
      Gangat N, Szuber N, Tefferi A. JAK2 unmutated erythrocytosis: 2023 update on diagnosis and management. Am J Hematol. 2023;98:965–981. https://doi.org/10.1002/ajh.26920.
      Gordeuk VR, Sergueeva AI, Miasnikova GY, Okhotin D, Voloshin Y, Choyke PL, et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood. 2004;103:3924–3932. https://doi.org/10.1182/blood‐2003‐07‐2535.
      Taher A, Isma'eel H, Mehio G, Bignamini D, Kattamis A, Rachmilewitz EA, et al. Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran. Thromb Haemost. 2006;96:488–491.
      Cappellini MD, Musallam KM, Poggiali E, Taher AT. Hypercoagulability in non‐transfusion‐dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S20–S23. https://doi.org/10.1016/s0268‐960x(12)70007‐3.
      Naik RP, Streiff MB, Haywood C Jr, Segal JB, Lanzkron S. Venous thromboembolism incidence in the cooperative study of sickle cell disease. J Thromb Haemost. 2014;12:2010–2016. https://doi.org/10.1111/jth.12744.
      Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, et al. Nitric oxide scavenging by red blood cell microparticles and cell‐free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 2011;124:465–476. https://doi.org/10.1161/circulationaha.110.008698.
      Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme‐induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123:3818–3827. https://doi.org/10.1182/blood‐2013‐10‐529982.
      NaveenKumar SK, Hemshekhar M, Sharathbabu BN, Kemparaju K, Mugesh G, Girish KS. Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochim Biophys Acta Mol basis Dis. 2023;1869:166688. https://doi.org/10.1016/j.bbadis.2023.166688.
      Vats R, Kaminski TW, Brzoska T, Leech JA, Tutuncuoglu E, Katoch O, et al. Liver‐to‐lung microembolic NETs promote gasdermin D‐dependent inflammatory lung injury in sickle cell disease. Blood. 2022;140:1020–1037. https://doi.org/10.1182/blood.2021014552.
      Conway EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost. 2015;13(Suppl 1):S121–S132. https://doi.org/10.1111/jth.12950.
      Broome CM, Cunningham JM, Mullins M, Jiang X, Bylsma LC, Fryzek JP, et al. Increased risk of thrombotic events in cold agglutinin disease: a 10‐year retrospective analysis. Res Pract Thromb Haemost. 2020;4:628–635. https://doi.org/10.1002/rth2.12333.
      Kelly RJ, Hill A, Arnold LM, Brooksbank GL, Richards SJ, Cullen M, et al. Long‐term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. Blood. 2011;117:6786–6792. https://doi.org/10.1182/blood‐2011‐02‐333997.
      Araten DJ, Notaro R, Thaler HT, Kernan N, Boulad F, Castro‐Malaspina H, et al. Thrombolytic therapy is effective in paroxysmal nocturnal hemoglobinuria: a series of nine patients and a review of the literature. Haematologica. 2012;97:344–352. https://doi.org/10.3324/haematol.2011.049767.
      Hill A, Kelly RJ, Hillmen P. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood. 2013;121:4985–4996; quiz 5105. https://doi.org/10.1182/blood‐2012‐09‐311381.
      Figueiredo RT, Fernandez PL, Mourao‐Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of toll‐like receptor 4. J Biol Chem. 2007;282:20221–20229. https://doi.org/10.1074/jbc.M610737200.
      Ninomiya H, Kawashima Y, Hasegawa Y, Nagasawa T. Complement‐induced procoagulant alteration of red blood cell membranes with microvesicle formation in paroxysmal nocturnal haemoglobinuria (PNH): implication for thrombogenesis in PNH. Br J Haematol. 1999;106:224–231. https://doi.org/10.1046/j.1365‐2141.1999.01483.x.
      van Bijnen ST, Wouters D, van Mierlo GJ, Muus P, Zeerleder S. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab. J Thromb Haemost. 2015;13:2004–2011. https://doi.org/10.1111/jth.13125.
      Gerber GF, DeZern AE, Chaturvedi S, Brodsky RA. A 15‐year, single institution experience of anticoagulation management in paroxysmal nocturnal hemoglobinuria patients on terminal complement inhibition with history of thromboembolism. Am J Hematol. 2022;97:e59–e62. https://doi.org/10.1002/ajh.26414.
      Röth A, Barcellini W, D'Sa S, Miyakawa Y, Broome CM, Michel M, et al. Sutimlimab in cold agglutinin disease. N Engl J Med. 2021;384:1323–1334. https://doi.org/10.1056/NEJMoa2027760.
      Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45. https://doi.org/10.1038/nri3345.
      Dou H, Wang R, Tavallaie M, Xiao T, Olszewska M, Papapetrou EP, et al. Hematopoietic and eosinophil‐specific LNK(SH2B3) deficiency promotes eosinophilia and arterial thrombosis. Blood. 2024;143:1758–1772. https://doi.org/10.1182/blood.2023021055.
      Connolly GC, Khorana AA, Kuderer NM, Culakova E, Francis CW, Lyman GH. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thromb Res. 2010;126:113–118. https://doi.org/10.1016/j.thromres.2010.05.012.
      Kushnir M, Cohen HW, Billett HH. Persistent neutrophilia is a marker for an increased risk of venous thrombosis. J Thromb Thrombolysis. 2016;42:545–551. https://doi.org/10.1007/s11239‐016‐1398‐4.
      Carobbio A, Vannucchi AM, de Stefano V, Masciulli A, Guglielmelli P, Loscocco GG, et al. Neutrophil‐to‐lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022;12:28. https://doi.org/10.1038/s41408‐022‐00625‐5.
      Abrams ST, du M, Shaw RJ, Johnson C, McGuinness D, Schofield J, et al. Damage‐associated cellular markers in the clinical and pathogenic profile of vaccine‐induced immune thrombotic thrombocytopenia. J Thromb Haemost. 2023;22:1145–1153. https://doi.org/10.1016/j.jtha.2023.12.008.
      Shahneh F, Grill A, Klein M, Frauhammer F, Bopp T, Schäfer K, et al. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood. 2021;137:1517–1526. https://doi.org/10.1182/blood.2020005407.
      Maldonado‐Peña J, Rivera K, Ortega C, Betancourt M, Lugo JE, Camargo E. Can monocytosis act as an independent variable for predicting deep vein thrombosis? Int J Cardiol. 2016;219:282–284. https://doi.org/10.1016/j.ijcard.2016.06.020.
      Shahneh F, Christian Probst H, Wiesmann SC, A‐Gonzalez N, Ruf W, Steinbrink K, et al. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vasc Biol. 2022;42:145–155. https://doi.org/10.1161/atvbaha.121.317176.
      Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. https://doi.org/10.1126/science.1092385.
      Kaplan MJ, Radic M. Neutrophil extracellular traps: double‐edged swords of innate immunity. J Immunol. 2012;189:2689–2695. https://doi.org/10.4049/jimmunol.1201719.
      Abrams ST, Su D, Sahraoui Y, Lin Z, Cheng Z, Nesbitt K, et al. Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation. Blood. 2021;137:103–114. https://doi.org/10.1182/blood.2019002973.
      Noubouossie DF, Reeves BN, Strahl BD, Key NS. Neutrophils: back in the thrombosis spotlight. Blood. 2019;133:2186–2197. https://doi.org/10.1182/blood‐2018‐10‐862243.
      Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–896. https://doi.org/10.1038/nm.2184.
      Obi AT, Andraska E, Kanthi Y, Kessinger CW, Elfline M, Luke C, et al. Endotoxaemia‐augmented murine venous thrombosis is dependent on TLR‐4 and ICAM‐1, and potentiated by neutropenia. Thromb Haemost. 2017;117:339–348. https://doi.org/10.1160/th16‐03‐0218.
      Wu K, Urano T, Ihara H, Takada Y, Fujie M, Shikimori M, et al. The cleavage and inactivation of plasminogen activator inhibitor type 1 by neutrophil elastase: the evaluation of its physiologic relevance in fibrinolysis. Blood. 1995;86:1056–1061.
      Stanworth SJ, Hudson CL, Estcourt LJ, Johnson RJ, Wood EM. Risk of bleeding and use of platelet transfusions in patients with hematologic malignancies: recurrent event analysis. Haematologica. 2015;100:740–747. https://doi.org/10.3324/haematol.2014.118075.
      Goerge T, Ho‐Tin‐Noe B, Carbo C, Benarafa C, Remold‐O'Donnell E, Zhao BQ, et al. Inflammation induces hemorrhage in thrombocytopenia. Blood. 2008;111:4958–4964. https://doi.org/10.1182/blood‐2007‐11‐123620.
      Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, et al. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44:53–61. https://doi.org/10.1002/hep.21231.
      Goel R, Ness PM, Takemoto CM, Krishnamurti L, King KE, Tobian AA. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in‐hospital mortality. Blood. 2015;125:1470–1476. https://doi.org/10.1182/blood‐2014‐10‐605493.
      Sarpatwari A, Bennett D, Logie JW, Shukla A, Beach KJ, Newland AC, et al. Thromboembolic events among adult patients with primary immune thrombocytopenia in the United Kingdom general practice research database. Haematologica. 2010;95:1167–1175. https://doi.org/10.3324/haematol.2009.018390.
      Piel‐Julian ML, Mahévas M, Germain J, Languille L, Comont T, Lapeyre‐Mestre M, et al. Risk factors for bleeding, including platelet count threshold, in newly diagnosed immune thrombocytopenia adults. J Thromb Haemost. 2018;16:1830–1842. https://doi.org/10.1111/jth.14227.
      Greene LA, Chen S, Seery C, Imahiyerobo AM, Bussel JB. Beyond the platelet count: immature platelet fraction and thromboelastometry correlate with bleeding in patients with immune thrombocytopenia. Br J Haematol. 2014;166:592–600. https://doi.org/10.1111/bjh.12929.
      Diz‐Küçükkaya R, Hacıhanefioǧlu A, Yenerel M, Turgut M, Keskin H, Nalçacı M, et al. Antiphospholipid antibodies and antiphospholipid syndrome in patients presenting with immune thrombocytopenic purpura: a prospective cohort study. Blood. 2001;98:1760–1764. https://doi.org/10.1182/blood.v98.6.1760.
      Machin N, Ragni MV, Comer DM, Yabes JG. Prevalence and correlates of thrombosis in adults with immune thrombocytopenia: an NIS study. Thromb Res. 2018;172:80–85. https://doi.org/10.1016/j.thromres.2018.10.017.
      Pavord S, Scully M, Hunt BJ, Lester W, Bagot C, Craven B, et al. Clinical features of vaccine‐induced immune thrombocytopenia and thrombosis. N Engl J Med. 2021;385:1680–1689. https://doi.org/10.1056/NEJMoa2109908.
      Makris M, Pavord S. Most cases of thrombosis and thrombocytopenia syndrome (TTS) post ChAdOx‐1 nCov‐19 are vaccine‐induced immune thrombotic thrombocytopenia (VITT). The Lancet Regional Health–Europe. 2022;12:100274.
      Schofield J, Toh CH. How to approach acute thrombosis and thrombocytopenia. Clin Med (Lond). 2023;23:234–241. https://doi.org/10.7861/clinmed2023‐0076.
      Greinacher A, Selleng K, Palankar R, Wesche J, Handtke S, Wolff M, et al. Insights in ChAdOx1 nCoV‐19 vaccine‐induced immune thrombotic thrombocytopenia. Blood. 2021;138:2256–2268. https://doi.org/10.1182/blood.2021013231.
      Schönborn L, Esteban O, Wesche J, Dobosz P, Broto M, Puig SR, et al. Anti‐PF4 immunothrombosis without proximate heparin or adenovirus vector vaccine exposure. Blood. 2023;142:2305–2314. https://doi.org/10.1182/blood.2023022136.
      Song AB, Kuter DJ, Al‐Samkari H. Characterization of the rate, predictors, and thrombotic complications of thrombocytosis in iron deficiency anemia. Am J Hematol. 2020;95:1180–1186. https://doi.org/10.1002/ajh.25925.
      Nicol C, Lacut K, Pan‐Petesch B, Lippert E, Ianotto JC. Hemorrhage in essential thrombocythemia or polycythemia vera: epidemiology, location, risk factors, and lessons learned from the literature. Thromb Haemost. 2021;121:553–564. https://doi.org/10.1055/s‐0040‐1720979.
      Stuckey R, Ianotto JC, Santoro M, Czyż A, Encinas MMP, Gómez‐Casares MT, et al. Prediction of major bleeding events in 1381 patients with essential thrombocythemia. Int J Hematol. 2023;118:589–595. https://doi.org/10.1007/s12185‐023‐03650‐7.
      Rottenstreich A, Kleinstern G, Krichevsky S, Varon D, Lavie D, Kalish Y. Factors related to the development of acquired von Willebrand syndrome in patients with essential thrombocythemia and polycythemia vera. Eur J Intern Med. 2017;41:49–54. https://doi.org/10.1016/j.ejim.2016.11.011.
      Lancellotti S, Dragani A, Ranalli P, Petrucci G, Basso M, Tartaglione R, et al. Qualitative and quantitative modifications of von Willebrand factor in patients with essential thrombocythemia and controlled platelet count. J Thromb Haemost. 2015;13:1226–1237. https://doi.org/10.1111/jth.12967.
      Kubo M, Sakai K, Hayakawa M, Kashiwagi H, Yagi H, Seki Y, et al. Increased cleavage of von Willebrand factor by ADAMTS13 may contribute strongly to acquired von Willebrand syndrome development in patients with essential thrombocythemia. J Thromb Haemost. 2022;20:1589–1598. https://doi.org/10.1111/jth.15717.
      Budde U, Scharf RE, Franke P, Hartmann‐Budde K, Dent J, Ruggeri ZM. Elevated platelet count as a cause of abnormal von Willebrand factor multimer distribution in plasma. Blood. 1993;82:1749–1757.
      Siedlecki CA, Lestini BJ, Kottke‐Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear‐dependent changes in the three‐dimensional structure of human von Willebrand factor. Blood. 1996;88:2939–2950.
      Whitty CJM, MacEwen C, Goddard A, Alderson D, Marshall M, Calderwood C, et al. Rising to the challenge of multimorbidity. BMJ. 2020;368:l6964. https://doi.org/10.1136/bmj.l6964.
      Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133:40–50. https://doi.org/10.1182/blood‐2018‐06‐856500.
      Ellingsen TS, Lappegård J, Ueland T, Aukrust P, Brækkan SK, Hansen JB. Plasma hepcidin is associated with future risk of venous thromboembolism. Blood Adv. 2018;2:1191–1197. https://doi.org/10.1182/bloodadvances.2018018465.
      Gagnon DR, Zhang TJ, Brand FN, Kannel WB. Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34‐year follow‐up. Am Heart J. 1994;127:674–682. https://doi.org/10.1016/0002‐8703(94)90679‐3.
      Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–2042. https://doi.org/10.1001/jama.282.21.2035.
      Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–438. https://doi.org/10.1161/01.Cir.0000111245.75752.C6.
      Timoteo VJ, Chiang KM, Pan WH. Positive or U‐shaped association of elevated hemoglobin concentration levels with metabolic syndrome and metabolic components: findings from Taiwan Biobank and UK Biobank. Nutrients. 2022;14:4007. https://doi.org/10.3390/nu14194007.
      Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55. https://doi.org/10.1016/j.immuni.2021.12.013.
      Johansson M, Johansson L, Wennberg P, Lind M. Physical activity and risk of first‐time venous thromboembolism. Eur J Prev Cardiol. 2019;26:1181–1187. https://doi.org/10.1177/2047487319829310.
      García‐Vega D, Sánchez‐López D, Rodríguez‐Carnero G, Villar‐Taibo R, Viñuela JE, Lestegás‐Soto A, et al. Semaglutide modulates prothrombotic and atherosclerotic mechanisms, associated with epicardial fat, neutrophils and endothelial cells network. Cardiovasc Diabetol. 2024;23:1. https://doi.org/10.1186/s12933‐023‐02096‐9.
      Cho YI, Cho DJ. Hemorheology and microvascular disorders. Korean Circ J. 2011;41:287–295. https://doi.org/10.4070/kcj.2011.41.6.287.
      Chung DW, Platten K, Ozawa K, Adili R, Pamir N, Nussdorfer F, et al. Low‐density lipoprotein promotes microvascular thrombosis by enhancing von Willebrand factor self‐association. Blood. 2023;142:1156–1166. https://doi.org/10.1182/blood.2023019749.
      Siniscalchi C, Basaglia M, Riva M, Meschi M, Meschi T, Castaldo G, et al. Statins effects on blood clotting: a review. Cells. 2023;12:2719. https://doi.org/10.3390/cells12232719.
      Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. Am J Med. 1981;70:1195–1202. https://doi.org/10.1016/0002‐9343(81)90827‐5.
      Mahmoodi BK, Cushman M, Anne Næss I, Allison MA, Bos WJ, Brækkan SK, et al. Association of traditional cardiovascular risk factors with venous thromboembolism: an individual participant data meta‐analysis of prospective studies. Circulation. 2017;135:7–16. https://doi.org/10.1161/circulationaha.116.024507.
      Cho YI, Mooney MP, Cho DJ. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008;2:1130–1138. https://doi.org/10.1177/193229680800200622.
      Sha T, Zhang Y, Li C, Lei G, Wu J, Li X, et al. Association of metformin use with Risk of venous thromboembolism in adults with type 2 diabetes: a general‐population‐based cohort study. Am J Epidemiol. 2022;191:856–866. https://doi.org/10.1093/aje/kwab291.
      Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood. 2013;122:3415–3422. https://doi.org/10.1182/blood‐2013‐05‐427708.
      Şıklar Z, Öçal G, Berberoğlu M, Hacıhamdioğlu B, Erdeve ŞS, Eğin Y, et al. Evaluation of hypercoagulability in obese children with thrombin generation test and microparticle release: effect of metabolic parameters. Clin Appl Thromb Hemost. 2011;17:585–589. https://doi.org/10.1177/1076029611404216.
      Gregson J, Kaptoge S, Bolton T, Pennells L, Willeit P, Burgess S, et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol. 2019;4:163–173. https://doi.org/10.1001/jamacardio.2018.4537.
      Barale C, Buracco S, Cavalot F, Frascaroli C, Guerrasio A, Russo I. Glucagon‐like peptide 1‐related peptides increase nitric oxide effects to reduce platelet activation. Thromb Haemost. 2017;117:1115–1128. https://doi.org/10.1160/th16‐07‐0586.
      Stewart LK, Kline JA. Metabolic syndrome increases risk of venous thromboembolism recurrence after acute pulmonary embolism. Ann Am Thorac Soc. 2020;17:821–828. https://doi.org/10.1513/AnnalsATS.201907‐518OC.
      Gangat N, Szuber N, Alkhateeb H, Al‐Kali A, Pardanani A, Tefferi A. JAK2 wild‐type erythrocytosis associated with sodium‐glucose cotransporter 2 inhibitor therapy. Blood. 2021;138:2886–2889. https://doi.org/10.1182/blood.2021013996.
      Packer M. SGLT2 inhibitors produce Cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care. 2020;43:508–511. https://doi.org/10.2337/dci19‐0074.
      Gangat N, Abdallah M, Szuber N, Saliba A, Alkhateeb H, al‐Kali A, et al. Sodium‐glucose co‐transporter‐2 inhibitor use and JAK2 unmutated erythrocytosis in 100 consecutive cases. Am J Hematol. 2023;98:E165–E167. https://doi.org/10.1002/ajh.26933.
      Donnelly LA, Dennis JM, Coleman RL, Sattar N, Hattersley AT, Holman RR, et al. Risk of anemia with metformin use in type 2 diabetes: a MASTERMIND study. Diabetes Care. 2020;43:2493–2499. https://doi.org/10.2337/dc20‐1104.
      Li X, Li J, Wang L, Li A, Qiu Z, Qi LW, et al. The role of metformin and resveratrol in the prevention of hypoxia‐inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue. Br J Pharmacol. 2016;173:2001–2015. https://doi.org/10.1111/bph.13493.
      Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood. 2017;129:2836–2846. https://doi.org/10.1182/blood‐2016‐10‐709857.
    • Grant Information:
      Liverpool University Hospitals NHS Foundation Trust (LUHFT)
    • Contributed Indexing:
      Keywords: bleeding disorders; blood coagulation; haemostasis; immunohaematology; laboratory haematology; thrombosis
    • Publication Date:
      Date Created: 20240807 Date Completed: 20241017 Latest Revision: 20241017
    • Publication Date:
      20241017
    • Accession Number:
      10.1111/bjh.19690
    • Accession Number:
      39111105