Source-to-tap investigation of the occurrence of nontuberculous mycobacteria in a full-scale chloraminated drinking water system.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, American Society for Microbiology.
    • Subject Terms:
    • Abstract:
      Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (10 7 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium , were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.
      Competing Interests: The authors declare no conflict of interest.
    • References:
      Water Res. 2021 Oct 15;205:117571. (PMID: 34628111)
      BMC Public Health. 2010 Oct 15;10:612. (PMID: 20950421)
      Tuberculosis (Edinb). 2023 Jan;138:102291. (PMID: 36521261)
      Water Sci Technol. 2004;50(1):83-90. (PMID: 15318491)
      Environ Sci Pollut Res Int. 2017 Jan;24(3):2326-2336. (PMID: 27815848)
      J Clin Microbiol. 1999 Mar;37(3):852-7. (PMID: 9986875)
      Front Med (Lausanne). 2017 Mar 07;4:27. (PMID: 28326308)
      Am J Infect Control. 2021 Dec;49(12):1564-1566. (PMID: 34537274)
      PeerJ. 2019 Jul 26;7:e7359. (PMID: 31388474)
      Pediatr Infect Dis J. 2014 Dec;33(12):1299-301. (PMID: 25037036)
      PLoS One. 2011;6(9):e24720. (PMID: 21935444)
      Microorganisms. 2022 Jul 18;10(7):. (PMID: 35889166)
      Clin Chem. 2009 Apr;55(4):611-22. (PMID: 19246619)
      AWWA Water Sci. 2020 Jul-Aug;2(4):e1186. (PMID: 32838226)
      PLoS One. 2021 Mar 3;16(3):e0247166. (PMID: 33657154)
      Ann Am Thorac Soc. 2018 Jul;15(7):817-826. (PMID: 29897781)
      Appl Environ Microbiol. 2002 Nov;68(11):5318-25. (PMID: 12406720)
      Open Forum Infect Dis. 2020 Nov 27;8(1):ofaa580. (PMID: 33447641)
      mBio. 2021 Feb 2;12(1):. (PMID: 33531401)
      mBio. 2018 Feb 13;9(1):. (PMID: 29440575)
      Curr Opin Biotechnol. 2012 Jun;23(3):422-30. (PMID: 22153035)
      J Microbiol Methods. 2018 Oct;153:139-147. (PMID: 30267718)
      Int J Hyg Environ Health. 2022 Apr;241:113945. (PMID: 35182850)
      Nat Microbiol. 2018 Jul;3(7):836-843. (PMID: 29807988)
      Microbiol Spectr. 2021 Dec 22;9(3):e0143421. (PMID: 34730411)
      Emerg Infect Dis. 2021 Jan;27(1):140-149. (PMID: 33350905)
      J Microbiol Methods. 2007 Aug;70(2):252-60. (PMID: 17544161)
      BMC Infect Dis. 2021 Mar 12;21(1):258. (PMID: 33706712)
      Appl Environ Microbiol. 2019 Aug 14;85(17):. (PMID: 31253672)
      Respir Med. 2011 Nov;105(11):1718-25. (PMID: 21868209)
      Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):2095-2105. (PMID: 15545441)
      PLoS One. 2016 Apr 19;11(4):e0153876. (PMID: 27093603)
      PLoS Negl Trop Dis. 2016 Oct 25;10(10):e0005068. (PMID: 27780201)
      Am J Respir Crit Care Med. 2007 Feb 15;175(4):367-416. (PMID: 17277290)
      Clin Microbiol Infect. 2018 Jun;24(6):599-603. (PMID: 29174730)
      Bioinformatics. 2016 Feb 15;32(4):605-7. (PMID: 26515820)
      Clin Chest Med. 2023 Dec;44(4):675-721. (PMID: 37890910)
      PLoS One. 2012;7(8):e43093. (PMID: 22905208)
      Cell. 2016 Aug 25;166(5):1103-1116. (PMID: 27565341)
      BMC Infect Dis. 2016 May 06;16:195. (PMID: 27154015)
      J Clin Microbiol. 2003 Dec;41(12):5699-708. (PMID: 14662964)
      Nat Methods. 2014 Nov;11(11):1144-6. (PMID: 25218180)
      ISME J. 2017 Dec;11(12):2864-2868. (PMID: 28742071)
      mBio. 2018 Oct 30;9(5):. (PMID: 30377276)
      Environ Sci Technol. 2018 Mar 6;52(5):2618-2628. (PMID: 29299927)
      Environ Sci Technol. 2015 May 19;49(10):6127-33. (PMID: 25902261)
      Environ Sci Technol. 2012 Aug 21;46(16):8851-9. (PMID: 22793041)
      Bioinformatics. 2018 Sep 1;34(17):i884-i890. (PMID: 30423086)
      Environ Sci Technol. 2021 Aug 3;55(15):10210-10223. (PMID: 34286966)
      Sci Rep. 2022 Jan 24;12(1):1237. (PMID: 35075208)
      Pathogens. 2018 Oct 05;7(4):. (PMID: 30301158)
      Front Microbiol. 2023 Oct 17;14:1260460. (PMID: 37915853)
      Curr Opin Biotechnol. 2019 Jun;57:127-136. (PMID: 31003169)
      Water Res. 2022 Mar 1;211:117997. (PMID: 34999316)
      Curr Microbiol. 2020 Apr;77(4):621-631. (PMID: 31111226)
      Environ Sci Technol. 2017 Apr 18;51(8):4220-4229. (PMID: 28296394)
      Environ Sci Technol. 2014 Oct 21;48(20):11872-82. (PMID: 25247827)
      PLoS One. 2018 Jun 13;13(6):e0197976. (PMID: 29897938)
      J Hosp Infect. 2020 Mar;104(3):365-373. (PMID: 31628958)
      J Clin Microbiol. 2020 Sep 22;58(10):. (PMID: 32719033)
      Genome Res. 2017 May;27(5):824-834. (PMID: 28298430)
      Infect Control Hosp Epidemiol. 2004 Dec;25(12):1042-9. (PMID: 15636290)
      Appl Microbiol Biotechnol. 2022 Apr;106(7):2715-2727. (PMID: 35298694)
      Clin Infect Dis. 2023 Aug 22;77(4):629-637. (PMID: 37083882)
      Infect Control Hosp Epidemiol. 2015 Jan;36(1):76-80. (PMID: 25627764)
      Appl Environ Microbiol. 2008 Apr;74(8):2480-7. (PMID: 18310417)
      J Clin Microbiol. 2000 Aug;38(8):2966-71. (PMID: 10921960)
      Water Res. 2021 Oct 15;205:117689. (PMID: 34607086)
      Sci Total Environ. 2016 Aug 15;562:987-995. (PMID: 27260619)
      J Water Health. 2015 Mar;13(1):131-9. (PMID: 25719473)
      Environ Sci Technol. 2015 Jul 21;49(14):8416-24. (PMID: 26121595)
      Bioinformatics. 2013 Apr 15;29(8):1072-5. (PMID: 23422339)
      Genome Res. 2015 Jul;25(7):1043-55. (PMID: 25977477)
      BMC Pulm Med. 2019 Aug 1;19(1):140. (PMID: 31370826)
      Environ Microbiol. 2008 Oct;10(10):2728-45. (PMID: 18637950)
      Environ Sci Technol. 2019 Aug 6;53(15):8563-8573. (PMID: 31287948)
      Eur Respir J. 2017 Apr 26;49(4):. (PMID: 28446563)
      Nat Rev Microbiol. 2020 Jul;18(7):392-407. (PMID: 32086501)
      Appl Environ Microbiol. 2013 Oct;79(19):6160-6. (PMID: 23913420)
      Water Res. 2017 Feb 1;109:310-326. (PMID: 27915187)
      Emerg Infect Dis. 2023 Jul;29(7):1357-1366. (PMID: 37347505)
      BMC Microbiol. 2013 Dec 03;13:277. (PMID: 24299240)
      J Microbiol Methods. 2022 Feb;193:106405. (PMID: 34990646)
      Front Microbiol. 2017 Dec 12;8:2465. (PMID: 29312177)
      Infect Control Hosp Epidemiol. 2023 Dec;44(12):2056-2058. (PMID: 37272469)
      Bioinformatics. 2019 Nov 15;:. (PMID: 31730192)
      Environ Sci Technol. 2023 Dec 5;57(48):20360-20369. (PMID: 37970641)
      Int J Food Microbiol. 2015 Oct 1;210:143-8. (PMID: 26143168)
      Ann Am Thorac Soc. 2017 Nov;14(11):1655-1661. (PMID: 28817307)
      Appl Environ Microbiol. 2008 May;74(10):3094-8. (PMID: 18359837)
      Appl Environ Microbiol. 2019 Nov 27;85(24):. (PMID: 31604766)
      J Hosp Infect. 2008 Nov;70(3):253-8. (PMID: 18799238)
      Appl Environ Microbiol. 2010 Jun;76(11):3514-20. (PMID: 20363776)
      PeerJ. 2015 Oct 08;3:e1319. (PMID: 26500826)
      Water Res. 2017 Jun 15;117:68-86. (PMID: 28390237)
      Environ Sci Technol. 2020 Dec 15;54(24):15914-15924. (PMID: 33232602)
      Appl Environ Microbiol. 2013 Feb;79(3):825-34. (PMID: 23160134)
      Epidemiol Infect. 2020 Mar 13;148:e70. (PMID: 32167443)
      AWWA Water Sci. 2021 Sep-Oct;3(5):e1239. (PMID: 34901766)
    • Grant Information:
      College of Engineering Blue Sky Initiative University of Michigan (U-M); Project 4721 Water Research Foundation (WRF); DGE-1256260 NSF | National Science Foundation Graduate Research Fellowship Program (GRFP); Predoctoral Fellowship U-M | Horace H. Rackham School of Graduate Studies, University of Michigan (Rackham U-M)
    • Contributed Indexing:
      Keywords: Mycobacterium; building plumbing; drinking water; nontuberculous mycobacteria; opportunistic pathogens
    • Accession Number:
      0 (Drinking Water)
      0 (Chloramines)
      KW8K411A1P (chloramine)
      0 (Disinfectants)
    • Publication Date:
      Date Created: 20240807 Date Completed: 20240918 Latest Revision: 20240924
    • Publication Date:
      20240925
    • Accession Number:
      PMC11409651
    • Accession Number:
      10.1128/aem.00609-24
    • Accession Number:
      39109876