Human Electroretinography Shows Little Polarity Specificity Following Full-Field Ramp Adaptation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Association For Research In Vision And Ophthalmology (Arvo) Country of Publication: United States NLM ID: 7703701 Publication Model: Print Cited Medium: Internet ISSN: 1552-5783 (Electronic) Linking ISSN: 01460404 NLM ISO Abbreviation: Invest Ophthalmol Vis Sci Subsets: MEDLINE
    • Publication Information:
      Publication: Brookline Ma : Association For Research In Vision And Ophthalmology (Arvo)
      Original Publication: St. Louis, Mosby.
    • Subject Terms:
    • Abstract:
      Purpose: The ramp aftereffect, a visual phenomenon in which perception of light changes dynamically after exposure to sawtooth-modulated light, was first described in 1967. Despite decades of psychophysical research, location and mechanisms of its generation remain unknown. In this study, we investigated a potential retinal contribution to effect formation with specific emphasis on on-/off-pathway involvement.
      Methods: A 100 ms flash electroretinogram (ERG) was employed to probe the adaptive state of retinal neurons after presentation of stimuli that were homogenous in space but modulated in time following a sawtooth pattern (upward or downward ramps at 2 Hz). Additionally, a psychophysical nulling experiment was performed.
      Results: Psychophysics data confirmed previous findings that the ramp aftereffect opposes the adapting stimuli in ramp direction and is stronger after upward ramps. The ERG study revealed significant changes of activity in every response component in the low-frequency range (a-wave, b-wave, on-PhNR, d-wave and off-PhNR) and high-frequency range (oscillatory potentials) in amplitudes, peak times, or both. The changes are neither specific to the on- or off-response nor antagonistic between ramp directions. With downward ramp adaptation, effects were stronger. Neither amplitudes nor peak times were correlated with perception strength. Amplitudes and peak times were uncorrelated, and the effect diminished over time, ceasing almost completely with three seconds.
      Conclusions: Despite abundant effects on retinal responses, the pattern of adaptational effects was not specific to the sawtooth nature of adaptation. Although not ruling out retinal contributions the present findings favor post-retinal mechanisms as the primary locus of the ramp aftereffect.
    • References:
      J Neurophysiol. 2018 Apr 1;119(4):1437-1449. (PMID: 29357459)
      Vis Neurosci. 1990 Jan;4(1):75-93. (PMID: 2176096)
      Doc Ophthalmol. 2018 Jun;136(3):199-206. (PMID: 29934802)
      Vision Res. 1993 Jan;33(1):47-54. (PMID: 8451844)
      J Physiol. 2003 Mar 1;547(Pt 2):509-30. (PMID: 12562933)
      J Neurophysiol. 2006 Jun;95(6):3810-22. (PMID: 16510780)
      J Neurophysiol. 1988 Sep;60(3):1143-59. (PMID: 3171661)
      Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2119675119. (PMID: 35594404)
      Vision Res. 1984;24(12):1841-6. (PMID: 6534006)
      Invest Ophthalmol Vis Sci. 1983 Apr;24(4):442-50. (PMID: 6601088)
      Nature. 1969 Jul 12;223(5202):201-4. (PMID: 4307228)
      Acta Ophthalmol (Copenh). 1981 Aug;59(4):609-19. (PMID: 7315217)
      J Neurosci. 1986 Apr;6(4):907-18. (PMID: 3701415)
      Vision Res. 2006 Mar;46(5):658-64. (PMID: 16039691)
      Vision Res. 1992 Nov;32(11):2043-8. (PMID: 1304081)
      Vision Res. 2000;40(18):2379-85. (PMID: 10915879)
      J Neurophysiol. 2016 May 1;115(5):2349-58. (PMID: 26888098)
      J Neurophysiol. 1969 May;32(3):339-55. (PMID: 4306897)
      Invest Ophthalmol Vis Sci. 1989 Apr;30(4):625-30. (PMID: 2703304)
      Vision Res. 2000;40(14):1801-11. (PMID: 10837827)
      Vision Res. 1968 Jun;8(6):633-77. (PMID: 4978009)
      J Vis. 2013 May 21;13(6):. (PMID: 23695534)
      J Neurophysiol. 2007 Dec;98(6):3423-35. (PMID: 17928553)
      Invest Ophthalmol Vis Sci. 2001 Feb;42(2):514-22. (PMID: 11157891)
      J Physiol. 1961 Sep;158:257-80. (PMID: 13873687)
      Doc Ophthalmol. 2014 Oct;129(2):85-95. (PMID: 25074040)
      Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4818-28. (PMID: 17898309)
      Doc Ophthalmol. 2022 Jun;144(3):165-177. (PMID: 35511377)
      Doc Ophthalmol. 2018 Jun;136(3):207-211. (PMID: 29855761)
      Neurosci Lett. 1992 Aug 3;142(1):41-4. (PMID: 1407715)
      Invest Ophthalmol Vis Sci. 1978 Dec;17(12):1176-88. (PMID: 721390)
      Science. 1967 Feb 10;155(3763):710-2. (PMID: 6016954)
      Neuron. 2006 Jun 15;50(6):923-35. (PMID: 16772173)
      Vision Res. 1985;25(10):1365-73. (PMID: 4090272)
      Prog Retin Eye Res. 1998 Oct;17(4):485-521. (PMID: 9777648)
      Invest Ophthalmol Vis Sci. 1999 May;40(6):1124-36. (PMID: 10235545)
      Invest Ophthalmol Vis Sci. 1979 Sep;18(9):988-91. (PMID: 478786)
      Doc Ophthalmol. 2019 Jun;138(3):205-215. (PMID: 30929108)
      Optom Vis Sci. 1996 Jan;73(1):49-53. (PMID: 8867682)
      Vis Neurosci. 1994 May-Jun;11(3):519-32. (PMID: 8038126)
      Doc Ophthalmol. 2013 Feb;126(1):1-7. (PMID: 23073702)
      J Opt Soc Am A. 1987 Aug;4(8):1688-98. (PMID: 3625353)
      J Neurosci. 2002 Apr 1;22(7):2737-47. (PMID: 11923439)
      Invest Ophthalmol Vis Sci. 1994 Feb;35(2):635-45. (PMID: 8113014)
      Brain Res. 1978 Oct 13;154(2):388-94. (PMID: 687999)
      Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9666-70. (PMID: 1409680)
    • Publication Date:
      Date Created: 20240806 Date Completed: 20240806 Latest Revision: 20240810
    • Publication Date:
      20240812
    • Accession Number:
      PMC11309038
    • Accession Number:
      10.1167/iovs.65.10.11
    • Accession Number:
      39106057