Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Mohan RD;Mohan RD; Kulkarni NV; Kulkarni NV
  • Source:
    Molecular diversity [Mol Divers] 2024 Aug 05. Date of Electronic Publication: 2024 Aug 05.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: ESCOM Science Publishers Country of Publication: Netherlands NLM ID: 9516534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-501X (Electronic) Linking ISSN: 13811991 NLM ISO Abbreviation: Mol Divers Subsets: MEDLINE
    • Publication Information:
      Original Publication: Leiden, The Netherlands : ESCOM Science Publishers, c1995-
    • Abstract:
      Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040. (PMID: 10.1016/j.ejmech.2015.04.04025942353)
      Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N (2023) Food antioxidants and their interaction with human proteins. Antioxidants. https://doi.org/10.3390/antiox12040815. (PMID: 10.3390/antiox120408153750796210376007)
      Li YR, Trush M (2016) Defining ROS in biology and medicine. React Oxygen Species. https://doi.org/10.20455/ros.2016.803. (PMID: 10.20455/ros.2016.803)
      Herb M, Schramm M (2021) Functions of ros in macrophages and antimicrobial immunity. Antioxidants 10:1–39. https://doi.org/10.3390/antiox10020313. (PMID: 10.3390/antiox10020313)
      Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 97:2499–2574. https://doi.org/10.1007/s00204-023-03562-9. (PMID: 10.1007/s00204-023-03562-93759707810475008)
      De Deken X, Corvilain B, Dumont JE, Miot F (2014) Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 20:2776–2793. https://doi.org/10.1089/ars.2013.5602. (PMID: 10.1089/ars.2013.560224161126)
      Mooli RGR, Mukhi D, Ramakrishnan SK (2022) Oxidative stress and redox signaling in the pathophysiology of liver diseases. Compr Physiol 12:3167–3192. https://doi.org/10.1002/cphy.c200021. (PMID: 10.1002/cphy.c2000213557896910074426)
      Hassan W, Noreen H, Rehman S, Kamal MA, da Rocha JBT (2021) Association of oxidative stress with neurological disorders. Curr Neuropharmacol 20:1046–1072. https://doi.org/10.2174/1570159x19666211111141246. (PMID: 10.2174/1570159x19666211111141246)
      Huang Y, Long X, Tang J, Li X, Zhang X, Luo C, Zhou Y, Zhang P (2020) The attenuation of traumatic brain injury via inhibition of oxidative stress and apoptosis by tanshinone IIA. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4170156. (PMID: 10.1155/2020/4170156334889337791970)
      Cioffi F, Adam RHI, Broersen K (2019) Molecular . Alzheimer’s disease. J Alzheimer’s Dis 72:981–1017. https://doi.org/10.3233/JAD-190863. (PMID: 10.3233/JAD-190863)
      Percário S, Da Silva Barbosa A, Varela ELP, Gomes ARQ, Ferreira MES, De Nazaré Araújo Moreira T, Dolabela MF (2020) Oxidative stress in Parkinson’s disease: potential benefits of antioxidant supplementation. Oxid Med Cell Longev. https://doi.org/10.1155/2020/2360872. (PMID: 10.1155/2020/2360872331015847576349)
      LeFort KR, Rungratanawanich W, Song BJ (2024) Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci. https://doi.org/10.1007/s00018-023-05061-7. (PMID: 10.1007/s00018-023-05061-73821480210786752)
      Chang X, Zhang T, Zhang W, Zhao Z, Sun J (2020) Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxid Med Cell Longev. https://doi.org/10.1155/2020/5430407. (PMID: 10.1155/2020/5430407332995337704155)
      Iakovou E, Kourti M (2022) A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2022.827900. (PMID: 10.3389/fnagi.2022.827900357696009234325)
      Wang L, Zhang X, Xiong X, Zhu H, Chen R, Zhang S, Chen G, Jian Z (2022) Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants. https://doi.org/10.3390/antiox11122377. (PMID: 10.3390/antiox11122377366709419855131)
      Kibel A, Lukinac AM, Dambic V, Juric I, Relatic KS (2020) Oxidative stress in ischemic heart disease. Oxid Med Cell Longev. https://doi.org/10.1155/2020/6627144. (PMID: 10.1155/2020/6627144334566707785350)
      Jaiswal MK (2019) Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 39:733–748. https://doi.org/10.1002/med.21528. (PMID: 10.1002/med.2152830101496)
      Dash RP, Babu RJ, Srinivas NR (2018) Two decades-long journey from riluzole to edaravone: revisiting the clinical pharmacokinetics of the only two amyotrophic lateral sclerosis therapeutics. Clin Pharmacokinet 57:1385–1398. https://doi.org/10.1007/s40262-018-0655-4. (PMID: 10.1007/s40262-018-0655-429682695)
      Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N (2006) Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev 12:9–20. https://doi.org/10.1111/j.1527-3458.2006.00009.x. (PMID: 10.1111/j.1527-3458.2006.00009.x168347556741743)
      Watanabe T (n.d.) Preventive effect of MCI-186 on 15-HPETE induced vascular endothelial cell injury in vitro.
      Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF (2020) Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2020.115463. (PMID: 10.1016/j.bmc.2020.11546332241621)
      Pérez-González A, Galano A (2013) On the hydroperoxyl radical scavenging activity of two edaravone derivatives: mechanism and kinetics. J Phys Org Chem 26:261–268. https://doi.org/10.1002/poc.3082. (PMID: 10.1002/poc.3082)
      Watanabe T, Tahara M, Todo S (2008) The novel antioxidant edaravone: from bench to bedside. Cardiovasc Ther 26:101–114. https://doi.org/10.1111/j.1527-3466.2008.00041.x. (PMID: 10.1111/j.1527-3466.2008.00041.x18485133)
      Amekura S, Nakajima M, Watanabe M, Saitoh M, Iida S, Yamamoto Y, Fujisawa A (2020) 4-Cl-edaravone and (E)-2-chloro-3-[(E))phenyldiazenyl]]22butenoic acid are the specific reaction products of edaravone with hypochlorite. J Clin Biochem Nutr 67:159–166. https://doi.org/10.3164/jcbn.199115. (PMID: 10.3164/jcbn.199115330415137533859)
      Otomo E, Tohgi H, Kogure K, Hirai S, Takakura K, Terashi A, Gotoh F, Maruyama S, Tazaki Y, Shinohara Y, Ito E, Sawada T, Yamaguchi T, Kikuchi H, Kobayashi S, Fujishima M, Nakashima M (2003) Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction: randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis 15:222–229. https://doi.org/10.1159/000069318. (PMID: 10.1159/000069318)
      Zhang J, Xiao Y, Liu H, Xu L, Guo X, Gao Y, Li M, Xu J, Qi Q, Lv P (2023) Edaravone dexborneol alleviates neuroinflammation by reducing neuroglial cell proliferation and suppresses neuronal apoptosis/autophagy in vascular dementia rats. Neurochem Res 48:3113–3128. https://doi.org/10.1007/s11064-023-03973-1. (PMID: 10.1007/s11064-023-03973-137338792)
      Wang W, Chen F, Zheng F, Russell BT (2020) Optimization of synthesis of carbohydrates and 1-phenyl-3-methyl-5-pyrazolone (PMP) by response surface methodology (RSM) for improved carbohydrate detection. Food Chem. https://doi.org/10.1016/j.foodchem.2019.125686. (PMID: 10.1016/j.foodchem.2019.125686336919987541715)
      Atallah M, Yamashita T, Hu X, Hu X, Abe K (2023) Edaravone confers neuroprotective, anti-inflammatory, and antioxidant effects on the fetal brain of a placental-ischemia mouse model. J Neuroimmune Pharmacol 18:640–656. https://doi.org/10.1007/s11481-023-10095-6. (PMID: 10.1007/s11481-023-10095-637924374)
      Dammavalam V, Lin S, Nessa S, Daksla N, Stefanowski K, Costa A, Bergese S (2024) Neuroprotection during thrombectomy for acute ischemic stroke: a review of future therapies. Int J Mol Sci. https://doi.org/10.3390/ijms25020891. (PMID: 10.3390/ijms250208913906301311276729)
      Purohit VB, Prajapati RV, Prajapati VD, Karad SC, Sapariya NH, Avalani JR, et al. C−H Functionalization Reactions of 1‐Aryl‐5‐pyrazolones. European Journal of Organic Chemistry [Internet]. 2022 Dec 5;2022(45). https://doi.org/10.1002/ejoc.202201111.
      Marchetti F, Pettinari C, Di Nicola C, Tombesi A, Pettinari R (2019) Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2019.213069. (PMID: 10.1016/j.ccr.2019.213069)
      Casas JS, García-Tasende MS, Sánchez A, Sordo J, Touceda Á (2007) Coordination modes of 5-pyrazolones: a solid-state overview. Coord Chem Rev 251:1561–1589. https://doi.org/10.1016/j.ccr.2007.02.010. (PMID: 10.1016/j.ccr.2007.02.010)
      Sheng X, Hua K, Yang C, Wang X, Ji H, Xu J, Huang Z, Zhang Y (2015) Novel hybrids of 3-n-butylphthalide and edaravone: design, synthesis and evaluations as potential anti-ischemic stroke agents. Bioorg Med Chem Lett 25:3535–3540. https://doi.org/10.1016/j.bmcl.2015.06.090. (PMID: 10.1016/j.bmcl.2015.06.09026189079)
      Li X, Wang X, Miao L, Guo Y, Yuan R, Tian H (2021) Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun 556:99–105. https://doi.org/10.1016/j.bbrc.2021.03.171. (PMID: 10.1016/j.bbrc.2021.03.17133839420)
      Qiang X, Li Y, Yang X, Luo L, Xu R, Zheng Y, Cao Z, Tan Z, Deng Y (2017) DL-3-n-butylphthalide-Edaravone hybrids as novel dual inhibitors of amyloid-β aggregation and monoamine oxidases with high antioxidant potency for Alzheimer’s therapy. Bioorg Med Chem Lett 27:718–722. https://doi.org/10.1016/j.bmcl.2017.01.050. (PMID: 10.1016/j.bmcl.2017.01.05028131710)
      Hua K, Sheng X, Li TT, Wang LN, Zhang YH, Huang ZJ, Ji H (2015) The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats. Acta Pharmacol Sin 36:917–927. https://doi.org/10.1038/aps.2015.31. (PMID: 10.1038/aps.2015.31260733284564877)
      Jia J, Wu J, Ji D, Jiao W, Wang X, Huang Z, Zhang Y (2022) Synthesis and biological evaluation of hybrids from optically active ring-opened 3-N-butylphthalide derivatives and 4-fluro-edaravone as potential anti-acute ischemic stroke agents. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2022.116891. (PMID: 10.1016/j.bmc.2022.11689136442439)
      Qian Y, Lyu Y, Jiang M, Tang B, Nie T, Lu S (2019) Human urinary kallidinogenase or edaravone combined with butylphthalide in the treatment of acute ischemic stroke. Brain Behav. https://doi.org/10.1002/brb3.1438. (PMID: 10.1002/brb3.1438316383346908872)
      Guan Y, Li P, Liu Y, Guo L, Wu Q, Cheng Y (2021) Protective multi-target effects of DL-3-n-butylphthalide combined with 3-methyl-1-phenyl-2-pyrazolin-5-one in mice with ischemic stroke. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12490. (PMID: 10.3892/mmr.2021.12490346432468524408)
      Lapshina MA, Shevtsova EF, Grigoriev VV, Aksinenko AY, Ustyugov AA, Steinberg DA, Maleev GV, Dubrovskaya ES, Goreva TV, Epishina TA, Zamoyski VL, Makhaeva GF, Fisenko VP, Veselov IM, Vinogradova DV, Bachurin SO (2023) New adamantane-containing edaravone conjugates as potential neuroprotective agents for ALS treatments. Molecules. https://doi.org/10.3390/molecules28227567. (PMID: 10.3390/molecules282275673800528810673157)
      Zondagh LS, Malan SF, Joubert J (2020) Design, synthesis and biological evaluation of edaravone derivatives bearing the N-benzyl pyridinium moiety as multifunctional anti-Alzheimer’s agents. J Enzyme Inhib Med Chem 35:1596–1605. https://doi.org/10.1080/14756366.2020.1801673. (PMID: 10.1080/14756366.2020.1801673327795037470113)
      Vafadarnejad F, Karimpour-Razkenari E, Sameem B, Saeedi M, Firuzi O, Edraki N, Mahdavi M, Akbarzadeh T (2019) Novel N-benzylpyridinium moiety linked to arylisoxazole derivatives as selective butyrylcholinesterase inhibitors: synthesis, biological evaluation, and docking study. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103192. (PMID: 10.1016/j.bioorg.2019.10319231446239)
      Abdullaha M, Banoo R, Nuthakki VK, Sharma M, Kaur S, Thakur S, Kumar A, Jadhav HR, Bharate SB (2023) Methoxy-naphthyl-linked N-benzyl pyridinium styryls as dual cholinesterase inhibitors: design, synthesis, biological evaluation, and structure-activity relationship. ACS Omega 8:17591–17608. https://doi.org/10.1021/acsomega.2c08167. (PMID: 10.1021/acsomega.2c081673725115310210183)
      Khunnawutmanotham N, Laongthipparos C, Saparpakorn P, Chimnoi N, Techasakul S (2018) Synthesis of 3-aminocoumarin-N-benzylpyridinium conjugates with nanomolar inhibitory activity against acetylcholinesterase. Beilstein J Org Chem 14:2545–2552. https://doi.org/10.3762/bjoc.14.231. (PMID: 10.3762/bjoc.14.231304106156204823)
      Mollazadeh M, Mohammadi-Khanaposhtani M, Zonouzi A, Nadri H, Najafi Z, Larijani B, Mahdavi M (2019) New benzyl pyridinium derivatives bearing 2,4-dioxochroman moiety as potent agents for treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and docking study. Bioorg Chem 87:506–515. https://doi.org/10.1016/j.bioorg.2019.03.012. (PMID: 10.1016/j.bioorg.2019.03.01230928873)
      Gao M, Ma S, Xu T, Jiang N, Xu Y, Zhong Y, Wu B (2022) The design and synthesis of benzylpiperazine-based edaravone derivatives and their neuroprotective activities. J Chem Res. https://doi.org/10.1177/17475198221116827. (PMID: 10.1177/17475198221116827)
      Berczyński P, Kładna A, Bozdağ Dündar O, Murat HN, Sarı E, Kruk I, Aboul-Enein HY (2020) Preparation and in vitro antioxidant activity of some novel flavone analogues bearing piperazine moiety. Bioorg Chem 95:103513. https://doi.org/10.1016/J.BIOORG.2019.103513. (PMID: 10.1016/J.BIOORG.2019.10351331884144)
      Xie S, Li X, Yu H, Zhang P, Wang J, Wang C, Xu S, Wu Z, Liu J, Zhu Z, Xu J (2019) Design, synthesis and biological evaluation of isochroman-4-one hybrids bearing piperazine moiety as antihypertensive agent candidates. Bioorg Med Chem 27:2764–2770. https://doi.org/10.1016/j.bmc.2019.05.004. (PMID: 10.1016/j.bmc.2019.05.00431078380)
      Wang WY, Shen CW, Weng ZJ, Wang TC, Zhang C, Jin XQ, Li JQ (2016) Design, synthesis and biological evaluation of novel dicarbonylalkyl piperazine derivatives as neuroprotective agents. Chin Chem Lett 27:387–390. https://doi.org/10.1016/j.cclet.2015.11.002. (PMID: 10.1016/j.cclet.2015.11.002)
      Vinaya K, Naveen S, Ananda Kumar CS, Benakaprasad SB, Sridhar MA, Shashidhara Prasad J, Rangappa KS (2008) Synthesis, characterization, crystal and molecular structure analysis of a novel 1-benzhydryl piperazine derivative: 1-benzhydryl-4-(2-nitro- benzenesulfonyl)-piperazine. Struct Chem 19:765–770. https://doi.org/10.1007/s11224-008-9361-4. (PMID: 10.1007/s11224-008-9361-4)
      Wu B, Zhou L, Cai HH (2008) Synthesis and neuroprotective properties of novel cinnamide derivatives. Chin Chem Lett 19:1163–1166. https://doi.org/10.1016/j.cclet.2008.06.052. (PMID: 10.1016/j.cclet.2008.06.052)
      Xu H, He K, Li Y, Tao Y, Xu C, Hu Z, Wang T, Zhang C (2020) Cytoprotective effects evaluation of a novel danshensu derivative DEX-018 against oxidative stress injury in HUVECs. Biol Pharm Bull. https://doi.org/10.1248/bpb.b19-00878. (PMID: 10.1248/bpb.b19-0087833132321)
      Hassan A, Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Bangay G, Al-Sawahli MM, Fouad MK, Zoair MA, Abdalrhman TI, Elebeedy D, Ibrahim IA, Mohamed AF, Abd El Maksoud AI (2024) Synergistic differential DNA demethylation activity of danshensu (Salvia miltiorrhiza) associated with different probiotics in nonalcoholic fatty liver disease. Biomedicines. https://doi.org/10.3390/biomedicines12020279. (PMID: 10.3390/biomedicines120202793906211311274537)
      Tang Y, Wang M, Le X, Meng J, Huang L, Yu P, Chen J, Wu P (2011) Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine 18:1024–1030. https://doi.org/10.1016/j.phymed.2011.05.007. (PMID: 10.1016/j.phymed.2011.05.00721665454)
      Zhou X, Chan SW, Tseng HL, Deng Y, Hoi PM, Choi PS, Or PMY, Yang JM, Lam FFY, Lee SMY, Leung GPH, Kong SK, Ho HP, Kwan YW, Yeung JHK (2012) Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine 19:1263–1269. https://doi.org/10.1016/j.phymed.2012.08.011. (PMID: 10.1016/j.phymed.2012.08.01123026310)
      Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, Bin Zhao L (2008) Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol 46:73–81. https://doi.org/10.1016/j.fct.2007.06.034. (PMID: 10.1016/j.fct.2007.06.03417719161)
      Minnelli C, Laudadio E, Galeazzi R, Rusciano D, Armeni T, Stipa P, Cantarini M, Mobbili G (2019) Synthesis, characterization and antioxidant properties of a new lipophilic derivative of edaravone. Antioxidants. https://doi.org/10.3390/antiox8080258. (PMID: 10.3390/antiox8080258315057726770744)
      Minnelli C, Laudadio E, Fiorini R, Galeazzi R, Armeni T, Stipa P, Rusciano D, Mobbili G (2022) Influence of a lipophilic edaravone on physical state and activity of antioxidant liposomes: an experimental and in silico study. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2021.112217. (PMID: 10.1016/j.colsurfb.2021.112217)
      Laudadio E, Minnelli C, Mobbili G, Sabbatini G, Stipa P, Rusciano D, Galeazzi R (2022) Salt effects on mixed composition membranes containing an antioxidant lipophilic edaravone derivative: a computational-experimental study. Org Biomol Chem 20:5784–5795. https://doi.org/10.1039/d2ob01143c. (PMID: 10.1039/d2ob01143c35822625)
      Polkam N, Ramaswamy VR, Rayam P, Allaka TR, Anantaraju HS, Dharmarajan S, Perumal Y, Gandamalla D, Yellu NR, Balasubramanian S, Anireddy JS (2016) Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. Bioorg Med Chem Lett 26:2562–2568. https://doi.org/10.1016/j.bmcl.2016.03.024. (PMID: 10.1016/j.bmcl.2016.03.02427055942)
      Queiroz AN, Martins CC, Santos KLB, Carvalho ES, Owiti AO, Oliveira KRM, Herculano AM, da Silva ABF, Borges RS (2020) Experimental and theoretical study on structure-tautomerism among edaravone, isoxazolone, and their heterocycles derivatives as antioxidants. Saudi Pharm J 28:819–827. https://doi.org/10.1016/j.jsps.2020.06.001. (PMID: 10.1016/j.jsps.2020.06.001326474837335820)
      Hata K, Lin M, Katsumura Y, Muroya Y, Fu H, Yamashita S, Nakagawa H (2011) Pulse radiolysis study on free radical scavenger edaravone(3-methyl-1-phenyl-2-pyrazolin-5-one).2: a comparative study on edaravone derivatives. J Radiat Res 52:15–23. https://doi.org/10.1269/jrr.10060. (PMID: 10.1269/jrr.1006021139328)
      Walker JR, Fairfull-Smith KE, Anzai K, Lau S, White PJ, Scammells PJ, Bottle SE (2011) Edaravone containing isoindoline nitroxides for the potential treatment of cardiovascular ischaemia. MedChemComm 2:436–441. https://doi.org/10.1039/c1md00041a. (PMID: 10.1039/c1md00041a)
      Huie RE, Neta P (2006b) Chemistry of Reactive Oxygen Species. Kluwer Academic Publishers eBooks [Internet]. p. 33–73. https://doi.org/10.1007/0-306-46806-9_2.
      Free RR, Samuni A, Mitchell JB, Degraff W, Krishna CM, Samuni U, Russo A (n.d.) Nitroxide sod-mimics: modes of action.
      Morris S, Sosnovsky G, Hui B, Huber CO, Rao NUM, Swartz HM (1991) Chemical and electrochemical reduction rates of cyclic nitroxides (Nitroxyls). J Pharm Sci [Internet]. 80(2):149–52. https://doi.org/10.1002/jps.2600800212.
      Krishna MC, Degraff W, Hankovszky OH, Sár CP, Kálai T, Jeko J, Russo A, Mitchell JB, Hideg K (1998) Studies of structure-activity relationship of nitroxide free radicals and their precursors as modifiers against oxidative damage. J Med Chem 41:3477. (PMID: 10.1021/jm98021609719601)
      Maclean MA, Diez-Cecilia E, Lavery CB, Reed MA, Wang Y, Weaver DF, Stradiotto M (2016) Diversification of edaravone via palladium-catalyzed hydrazine cross-coupling: applications against protein misfolding and oligomerization of beta-amyloid. Bioorg Med Chem Lett 26:100–104. https://doi.org/10.1016/j.bmcl.2015.11.022. (PMID: 10.1016/j.bmcl.2015.11.02226598460)
      Chegaev K, Cena C, Giorgis M, Rolando B, Tosco P, Bertinaria M, Fruttero R, Carrupt PA, Gasco A (2009) Edaravone derivatives containing NO-donor functions. J Med Chem 52:574–578. https://doi.org/10.1021/jm8007008. (PMID: 10.1021/jm800700819113954)
      Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H (2023) Sustainable functionalized chitosan based nano-composites for wound dressings applications: a review. Environ Res. https://doi.org/10.1016/j.envres.2023.116580. (PMID: 10.1016/j.envres.2023.11658038154567)
      Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V (2019) Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci. https://doi.org/10.3390/ijms20235889. (PMID: 10.3390/ijms20235889317712456928789)
      Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV (2022) A review on chitosan and cellulose hydrogels for wound dressings. Polymers (Basel). https://doi.org/10.3390/polym14235163. (PMID: 10.3390/polym1423516336501559)
      Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549. https://doi.org/10.1039/c7ra13510f. (PMID: 10.1039/c7ra13510f355391329078458)
      Tamer TM, Valachová K, Hassan MA, Omer AM, El-Shafeey M, Mohy Eldin MS, Šoltés L (2018) Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater Sci Eng C 90:227–235. https://doi.org/10.1016/j.msec.2018.04.053. (PMID: 10.1016/j.msec.2018.04.053)
      Jain A, Yadav S, Malhotra P (2021) Accidental synthesis of a trimer of pyrazolone and comparison of its antioxidant activity: an investigatory report. J Chem Sci 133:77. https://doi.org/10.1007/s12039-021-01943-0. (PMID: 10.1007/s12039-021-01943-0)
      Kidwai M, Jain A, Sharma A, Kuhad RC (2013) Laccase—A natural source for the synthesis of benzofuro[2,3-c]pyrazolin- 5-ones. Catal Sci Technol 3:230–234. https://doi.org/10.1039/c2cy20452e. (PMID: 10.1039/c2cy20452e)
      Sano Y, Motomura T, Yamamoto F, Fukuda M, Mukai T, Maeda M (2010) 1-(3’-[125I]Iodophenyl)-3-methy-2-pyrazolin-5-one: preparation, solution stability, and biodistribution in normal mice. Chem Pharm Bull 58:1020. (PMID: 10.1248/cpb.58.1020)
      Barajas-Carrillo VW, Estolano-Cobián A, Díaz-Rubio L, Ayllón-Gutiérrez RR, Salazar-Aranda R, Díaz-Molina R, García-González V, Almanza-Reyes H, Rivero IA, Marrero JG, Córdova-Guerrero I (2021) Antioxidant and acetylcholinesterase inhibition activity of aliphatic and aromatic edaravone derivatives. Med Chem Res 30:610–623. https://doi.org/10.1007/s00044-020-02667-5. (PMID: 10.1007/s00044-020-02667-5)
    • Contributed Indexing:
      Keywords: Antioxidants; Derivatization; Edaravone; Oxidative stress; Reactive oxygen species (ROS)
    • Publication Date:
      Date Created: 20240805 Latest Revision: 20240805
    • Publication Date:
      20240805
    • Accession Number:
      10.1007/s11030-024-10940-7
    • Accession Number:
      39102113