How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Country of Publication: Netherlands NLM ID: 7909578 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-0003 (Electronic) Linking ISSN: 01418130 NLM ISO Abbreviation: Int J Biol Macromol Subsets: MEDLINE
    • Publication Information:
      Publication: Amsterdam : Elsevier
      Original Publication: Guildford, Eng., IPC Science and Technology Press.
    • Subject Terms:
    • Abstract:
      Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 Elsevier B.V. All rights reserved.)
    • Contributed Indexing:
      Keywords: Cellulose nanocrystal; Poly(β-hydroxybutyrate); Surface modification
    • Accession Number:
      9004-34-6 (Cellulose)
      26063-00-3 (poly-beta-hydroxybutyrate)
      0 (Hydroxybutyrates)
      0 (Polyesters)
      0 (Polyhydroxybutyrates)
    • Publication Date:
      Date Created: 20240804 Date Completed: 20240823 Latest Revision: 20240823
    • Publication Date:
      20240823
    • Accession Number:
      10.1016/j.ijbiomac.2024.134119
    • Accession Number:
      39098456