STOP1 regulates CCX1-mediated Ca 2+ homeostasis for plant adaptation to Ca 2+ deprivation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Pub Country of Publication: China (Republic : 1949- ) NLM ID: 101250502 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7909 (Electronic) Linking ISSN: 16729072 NLM ISO Abbreviation: J Integr Plant Biol Subsets: MEDLINE
    • Publication Information:
      Publication: [China] : Wiley-Blackwell Pub
      Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005-
    • Subject Terms:
    • Abstract:
      Calcium (Ca) is essential for plant growth and stress adaptation, yet its availability is often limited in acidic soils, posing a major threat to crop production. Understanding the intricate mechanisms orchestrating plant adaptation to Ca deficiency remains elusive. Here, we show that the Ca deficiency-enhanced nuclear accumulation of the transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) in Arabidopsis thaliana confers tolerance to Ca deprivation, with the global transcriptional responses triggered by Ca deprivation largely impaired in the stop1 mutant. Notably, STOP1 activates the Ca deprivation-induced expression of CATION/Ca 2+ EXCHANGER 1 (CCX1) by directly binding to its promoter region, which facilitates Ca 2+ efflux from endoplasmic reticulum to cytosol to maintain Ca homeostasis. Consequently, the constitutive expression of CCX1 in the stop1 mutant partially rescues the Ca deficiency phenotype by increasing Ca content in the shoots. These findings uncover the pivotal role of the STOP1-CCX1 axis in plant adaptation to low Ca, offering alternative manipulating strategies to improve plant Ca nutrition in acidic soils and extending our understanding of the multifaceted role of STOP1.
      (© 2024 Institute of Botany, Chinese Academy of Sciences.)
    • References:
      Agrahari, R.K., Kobayashi, Y., Enomoto, T., Miyachi, T., Sakuma, M., Fujita, M., Ogata, T., Fujita, Y., Iuchi, S., Kobayashi, M., et al. (2024). STOP1‐regulated SMALL AUXIN UP RNA55 (SAUR55) is involved in proton/malate co‐secretion for Al tolerance in Arabidopsis. Plant Direct. 8: e557.
      Balzergue, C., Dartevelle, T., Godon, C., Laugier, E., Meisrimler, C., Teulon, J.M., Creff, A., Bissler, M., Brouchoud, C., Hagege, A., et al. (2017). Low phosphate activates STOP1‐ALMT1 to rapidly inhibit root cell elongation. Nat. Commun. 8: 15300.
      Bradshaw, Jr., H.D. (2005). Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytol. 167: 81–88.
      Brady, D.J., Edwards, D.G., Asher, C.J., and Blamey, F.P.C. (1993). Calcium amelioration of aluminium toxicity effects on root hair development in soybean [Glycine max (L.) Merr.]. New Phytol. 123: 531–538.
      Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13: 1194–1202.
      Clough, S.J., and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
      Conn, S.J., Gilliham, M., Athman, A., Schreiber, A.W., Baumann, U., Moller, I., Cheng, N.H., Stancombe, M.A., Hirschi, K.D., Webb, A.A., et al. (2011). Cell‐specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23: 240–257.
      Corso, M., Doccula, F.G., de Melo, J.R.F., Costa, A., and Verbruggen, N. (2018). Endoplasmic reticulum‐localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca2+ dynamics in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115: 3966–3971.
      de Bang, T.C., Husted, S., Laursen, K.H., Persson, D.P., and Schjoerring, J.K. (2021). The molecular‐physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229: 2446–2469.
      Ding, Z.J., Xu, C., Yan, J.Y., Wang, Y.X., Cui, M.Q., Yuan, J.J., Wang, Y.N., Li, G.X., Wu, J.X., Wu, Y.R., et al. (2024). The LRR receptor‐like kinase ALR1 is a plant aluminum ion sensor. Cell Res. 34: 281–294.
      Enomoto, T., Tokizawa, M., Ito, H., Iuchi, S., Kobayashi, M., Yamamoto, Y.Y., Kobayashi, Y., and Koyama, H. (2019). STOP1 regulates the expression of HsfA2 and GDH genes critical for low‐oxygen tolerance in Arabidopsis. J. Exp. Bot. 70: 3297–3311.
      Fang, Q., Zhang, J., Zhang, Y., Fan, N., van den Burg, H.A., and Huang, C.F. (2020). Regulation of aluminum resistance in Arabidopsis Involves the SUMOylation of the zinc finger transcription factor STOP1. Plant Cell 32: 3921–3938.
      Gao, H., Wu, X., Zorrilla, C., Vega, S.E., and Palta, J.P. (2019). Fractionating of calcium in tuber and leaf tissues explains the calcium deficiency symptoms in potato plant overexpressing CAX1. Front. Plant Sci. 10: 1793.
      Hirschi, K.D. (1999). Expression of Arabidopsis CAX1 in tobacco: Altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113–2122.
      Hirschi, K.D. (2004). The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136: 2438–2442.
      Hirschi, K.D., Zhen, R.G., Cunningham, K.W., Rea, P.A., and Fink, G.R. (1996). CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 93: 8782–8786.
      Huang, S., Shen, L., Roelfsema, M.R.G., Becker, D., and Hedrich, R. (2023). Light‐gated channelrhodopsin sparks proton‐induced calcium release in guard cells. Science 382: 1314–1318.
      Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., and Kobayashi, M. (2007). Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. U.S.A. 104: 9900–9905.
      Khanal, R.C., and Nemere, I. (2008). Regulation of intestinal calcium transport. Annu. Rev. Nutr. 28: 179–196.
      Koyama, H., Toda, T., and Hara, T. (2001). Brief exposure to low‐pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: Pectin–Ca interaction may play an important role in proton rhizotoxicity. J. Exp. Bot. 52: 361–368.
      Koyama, H., Wu, L., Agrahari, R.K., and Kobayashi, Y. (2021). STOP1 regulatory system: Centered on multiple stress tolerance and cellular nutrient management. Mol. Plant 14: 1615–1617.
      Li, Z., Wang, X., Chen, J., Gao, J., Zhou, X., and Kuai, B. (2016). CCX1, a putative cation/Ca2+ exchanger, participates in regulation of reactive oxygen species homeostasis and leaf senescence. Plant Cell Physiol. 57: 2611–2619.
      Luan, S., and Wang, C. (2021). Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37: 311–340.
      Mercier, C., Roux, B., Have, M., Le Poder, L., Duong, N., David, P., Leonhardt, N., Blanchard, L., Naumann, C., Abel, S., et al. (2021). Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor. Plant J. 108: 1507–1521.
      Mora‐Macias, J., Ojeda‐Rivera, J.O., Gutierrez‐Alanis, D., Yong‐Villalobos, L., Oropeza‐Aburto, A., Raya‐Gonzalez, J., Jimenez‐Dominguez, G., Chavez‐Calvillo, G., Rellan‐Alvarez, R., and Herrera‐Estrella, L. (2017). Malate‐dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc. Natl. Acad. Sci. U.S.A. 114: E3563–E3572.
      O'Malley, R.C., Huang, S.S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165: 1280–1292.
      Ojeda‐Rivera, J.O., Oropeza‐Aburto, A., and Herrera‐Estrella, L. (2020). Dissection of root transcriptional responses to low pH, aluminum toxicity and iron excess under Pi‐limiting conditions in Arabidopsis wild‐type and stop1 seedlings. Front. Plant Sci. 11: 01200.
      Sadhukhan, A., Enomoto, T., Kobayashi, Y., Watanabe, T., Iuchi, S., Kobayashi, M., Sahoo, L., Yamamoto, Y.Y., and Koyama, H. (2019). Sensitive to proton rhizotoxicity1 regulates salt and drought tolerance of Arabidopsis thaliana through transcriptional regulation of CIPK23. Plant Cell Physiol. 60: 2113–2126.
      Sadhukhan, A., Kobayashi, Y., Iuchi, S., and Koyama, H. (2021). Synergistic and antagonistic pleiotropy of STOP1 in stress tolerance. Trends Plant Sci. 26: 1014–1022.
      Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., Kobayashi, M., et al. (2009). STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 150: 281–294.
      Shortle, W.C., and Smith, K.T. (1988). Aluminum‐induced calcium deficiency syndrome in declining red spruce. Science 240: 1017–1018.
      Tang, R.J., and Luan, S. (2017). Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Curr. Opin. Plant Biol. 39: 97–105.
      Teardo, E., Carraretto, L., Moscatiello, R., Cortese, E., Vicario, M., Festa, M., Maso, L., De Bortoli, S., Cali, T., Vothknecht, U.C., et al. (2019). A chloroplast‐localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat. Plants 5: 581–588.
      Tian, W.H., Ye, J.Y., Cui, M.Q., Chang, J.B., Liu, Y., Li, G.X., Wu, Y.R., Xu, J.M., Harberd, N.P., Mao, C.Z., et al. (2021). A transcription factor STOP1‐centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Mol. Plant 14: 1554–1568.
      Tokizawa, M., Enomoto, T., Chandnani, R., Mora‐Macias, J., Burbridge, C., Armenta‐Medina, A., Kobayashi, Y., Yamamoto, Y.Y., Koyama, H., and Kochian, L.V. (2023). The transcription factors, STOP1 and TCP20, are required for root system architecture alterations in response to nitrate deficiency. Proc. Natl. Acad. Sci. U.S.A. 120: e2300446120.
      Tokizawa, M., Enomoto, T., Ito, H., Wu, L., Kobayashi, Y., Mora‐Macias, J., Armenta‐Medina, D., Iuchi, S., Kobayashi, M., Nomoto, M., et al. (2021). High affinity promoter binding of STOP1 is essential for early expression of novel aluminum‐induced resistance genes GDH1 and GDH2 in Arabidopsis. J. Exp. Bot. 72: 2769–2789.
      Tokizawa, M., Kobayashi, Y., Saito, T., Kobayashi, M., Iuchi, S., Nomoto, M., Tada, Y., Yamamoto, Y.Y., and Koyama, H. (2015). SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM‐ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiol. 167: 991–1003.
      Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T., and Nuzhdin, S.V. (2010). Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 42: 260–263.
      Turner, T.L., von Wettberg, E.J., and Nuzhdin, S.V. (2008). Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS ONE 3: e3183.
      Tuteja, N., and Mahajan, S. (2007). Calcium signaling network in plants: An overview. Plant Signal. Behav. 2: 79–85.
      Wang, P., Yamaji, N., Mitani‐Ueno, N., Ge, J., and Ma, J.F. (2023). Knockout of a rice K5.2 gene increases Ca accumulation in the grain. J. Integr. Plant Biol. 66: 252–264.
      Wang, Z.F., Mi, T.W., Gao, Y.Q., Feng, H.Q., Wu, W.H., and Wang, Y. (2021). STOP1 regulates LKS1 transcription and coordinates K+/NH4+ balance in Arabidopsis response to low‐ K+ Stress. Int. J. Mol. Sci. 23: 383.
      Wei, X., Zhu, Y., Xie, W., Ren, W., Zhang, Y., Zhang, H., Dai, S., and Huang, C.F. (2023). H2O2 negatively regulates aluminum resistance via oxidation and degradation of the transcription factor STOP1. Plant Cell 36: 688–708.
      Wu, Z., Liang, F., Hong, B., Young, J.C., Sussman, M.R., Harper, J.F., and Sze, H. (2002). An endoplasmic reticulum‐bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol. 130: 128–137.
      Ye, J.Y., Tian, W.H., Zhou, M., Zhu, Q.Y., Du, W.X., Zhu, Y.X., Liu, X.X., Lin, X.Y., Zheng, S.J., and Jin, C.W. (2021). STOP1 activates NRT1.1‐mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. Plant Cell 33: 3658–3674.
      Zhang, Y., Zhang, J., Guo, J., Zhou, F., Singh, S., Xu, X., Xie, Q., Yang, Z., and Huang, C.F. (2019). F‐box protein RAE1 regulates the stability of the aluminum‐resistance transcription factor STOP1 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 116: 319–327.
      Zhou, F., Singh, S., Zhang, J., Fang, Q., Li, C., Wang, J., Zhao, C., Wang, P., and Huang, C.F. (2023). The MEKK1‐MKK1/2‐MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. Mol. Plant 16: 337–353.
    • Grant Information:
      GZC20232327 Postdoctoral Fellowship Program of CPSF; Agricultural Science and Technology Innovation Program; 2023YFD1901800 National Key Research and Development Program of China; 2023YFD1902905 National Key Research and Development Program of China; LY23C130005 Natural Science Foundation of Zhejiang Province; 32201702 National Natural Science Foundation of China; Y2023QC21 Central Public-interest Scientific Institution Basal Research Fund
    • Contributed Indexing:
      Keywords: CCX1; Ca deficiency; Ca homeostasis; STOP1; transcriptional response
    • Accession Number:
      0 (Arabidopsis Proteins)
      SY7Q814VUP (Calcium)
      0 (Transcription Factors)
      0 (STOP1 protein, Arabidopsis)
    • Publication Date:
      Date Created: 20240802 Date Completed: 20241018 Latest Revision: 20241018
    • Publication Date:
      20241019
    • Accession Number:
      10.1111/jipb.13754
    • Accession Number:
      39092784