Effects of pre-treatment, historical age, and sample characteristics on the stable isotope analyses of killer whale (Orcinus orca) bone.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Bowen KR;Bowen KR; Kurle CM; Kurle CM
  • Source:
    Rapid communications in mass spectrometry : RCM [Rapid Commun Mass Spectrom] 2024 Oct 15; Vol. 38 (19), pp. e9874.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: John Wiley And Sons Ltd Country of Publication: England NLM ID: 8802365 Publication Model: Print Cited Medium: Internet ISSN: 1097-0231 (Electronic) Linking ISSN: 09514198 NLM ISO Abbreviation: Rapid Commun Mass Spectrom Subsets: MEDLINE
    • Publication Information:
      Publication: Chichester : John Wiley And Sons Ltd
      Original Publication: London, UK : Heyden, c1987-
    • Subject Terms:
    • Abstract:
      Rationale: Stable isotope analysis of bone provides insight into animal foraging and allows for ecological reconstructions over time, however pre-treatment is required to isolate collagen. Pre-treatments typically consist of demineralization to remove inorganic components and/or lipid extraction to remove fats, but these protocols can differentially affect stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope values depending on the chemicals, tissues, and/or species involved. Species-specific methodologies create a standard for comparability across studies and enhance understanding of collagen isolation from modern cetacean bone.
      Methods: Elemental analyzers coupled to isotope ratio mass spectrometers were used to measure the δ 13 C and δ 15 N values of powdered killer whale (Orcinus orca) bone that was intact (control) or subjected to one of three experimental conditions: demineralized, lipid-extracted, and both demineralized and lipid-extracted. Additionally, C:N ratios were evaluated as a proxy for collagen purity. Lastly, correlations were examined between control C:N ratios vs. historical age and control C:N ratios vs. sample characteristics.
      Results: No significant differences in the δ 15 N values were observed for any of the experimental protocols. However, the δ 13 C values were significantly increased by all three experimental protocols: demineralization, lipid extraction, and both treatments combined. The most influential protocol was both demineralization and lipid extraction. Measures of the C:N ratios were also significantly lowered by demineralization and both treatments combined, indicating the material was closer to pure collagen after the treatments. Collagen purity as indicated via C:N ratio was not correlated with historical age nor sample characteristics.
      Conclusions: If only the δ 15 N values from killer whale bone are of interest for analysis, no pre-treatment seems necessary. If the δ 13 C values are of interest, samples should be both demineralized and lipid-extracted. As historical age and specimen characteristics are not correlated with sample contamination, all samples can be treated equally.
      (© 2024 The Author(s). Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.)
    • References:
      DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta. 1978;42(5):495‐506. doi:10.1016/0016‐7037(78)90199‐0.
      Deniro MJ, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta. 1981;45(3):341‐351. doi:10.1016/0016‐7037(81)90244‐1.
      Schoeninger MJ, DeNiro MJ. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta. 1984;48(4):625‐639. doi:10.1016/0016‐7037(84)90091‐7.
      Ambrose SH, DeNiro MJ. The isotopic ecology of east African mammals. Oecologia. 1986;69(3):395‐406. doi:10.1007/BF00377062.
      Boecklen WJ, Yarnes CT, Cook BA, James AC. On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst. 2011;42(1):411‐440. doi:10.1146/annurev‐ecolsys‐102209‐144726.
      Newsome SD, Clementz MT, Koch PL. Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mammal Sci. 2010. doi:10.1111/j.1748‐7692.2009.00354.x.
      Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci. 1990;17(4):431‐451. doi:10.1016/0305‐4403(90)90007‐R.
      Sealy J, Armstrong R, Schrire C. Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity. 1995;69(263):290‐300. doi:10.1017/S0003598X00064693.
      Hedges REM, Clement JG, Thomas CDL, O'Connell TC. Collagen turnover in the adult femoral mid‐shaft: Modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol. 2007;133(2):808‐816. doi:10.1002/ajpa.20598.
      Koch PL. Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K, eds. Stable Isotopes in Ecology and Environmental Science. 2nd ed. Blackwell Publishing Ltd; 2007:99‐154. doi:10.1002/9780470691854.
      Lee‐Thorp JA, Sealy JC, Van Der Merwe NJ. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci. 1989;16(6):585‐599. doi:10.1016/0305‐4403(89)90024‐1.
      Richards MP. Stable isotope analysis of bone and teeth as a means for reconstructing past human diets in Greece. In: Papathanasiou A, Richards MP, Fox SC, eds. Archaeodiet in the Greek World: Dietary Reconstruction from Stable Isotope Analysis. Hesperia supplement. The American School of Classical Studies at Athens; 2015:15‐23.
      Ferretti A, Medici L, Savioli M, Mascia MT, Malferrari D. Dead, fossil or alive: Bioapatite diagenesis and fossilization. Palaeogeogr Palaeoclimatol Palaeoecol. 2021;579:110608. doi:10.1016/j.palaeo.2021.110608.
      Guiry EJ, Szpak P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J Archaeol Sci. 2021;132:105416. doi:10.1016/j.jas.2021.105416.
      Neuman RE. The amino acid composition of gelatins, collagens and elastins from different sources. Arch Biochem. 1949;24(2):289‐298.
      DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317(6040):806‐809. doi:10.1038/317806a0.
      Van Klinken GJ. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci. 1999;26(6):687‐695. doi:10.1006/jasc.1998.0385.
      Liden K, Takahashi C, Nelson DE. The effects of lipids in stable carbon isotope analysis and the effects of NaOH treatment on the composition of extracted bone collagen. J Archaeol Sci. 1995;22(2):321‐326. doi:10.1006/jasc.1995.0034.
      Jørkov MLS, Heinemeier J, Lynnerup N. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. J Archaeol Sci. 2007;34(11):1824‐1829. doi:10.1016/j.jas.2006.12.020.
      Rand A, Bower M, Munkittrick J, Harris A, Burchell M, Grimes V. Comparison of three bone collagen extraction procedures: The effect of preservation on δ13C and δ15N values. N Atl Archaeol. 2015;4:93‐113.
      Medeiros L, Da Silveira MD, Petitet R, Bugoni L. Effects of lipid extraction on the isotopic values of sea turtle bone collagen. Aquat Biol. 2015;23(3):191‐199. doi:10.3354/ab00628.
      Wilson T, Szpak P. Acidification does not alter the stable isotope composition of bone collagen. PeerJ. 2022;10:e13593. doi:10.7717/peerj.13593.
      Pang S, Su FY, Green A, Salim J, McKittrick J, Jasiuk I. Comparison of different protocols for demineralization of cortical bone. Sci Rep. 2021;11(1):7012. doi:10.1038/s41598‐021‐86257‐4.
      Szpak P, Krippner K, Richards MP. Effects of sodium hydroxide treatment and ultrafiltration on the removal of humic contaminants from archaeological bone. Int J Osteoarchaeol. 2017;27(6):1070‐1077. doi:10.1002/oa.2630.
      Tatsch ACC, Secchi ER, Botta S. Effects of acidification, lipid removal and mathematical normalization on carbon and nitrogen stable isotope compositions in beaked whale (Ziphiidae) bone. Rapid Commun Mass Spectrom. 2016;30(3):460‐466. doi:10.1002/rcm.7457.
      Tomaszewicz CNT, Seminoff JA, Ramirez MD, Kurle CM. Effects of demineralization on the stable isotope analysis of bone samples. Rapid Commun Mass Spectrom RCM. 2015;29(20):1879‐1888. doi:10.1002/rcm.7295.
      Higgs ND, Little CTS, Glover AG. Bones as biofuel: A review of whale bone composition with implications for deep‐sea biology and palaeoanthropology. Proc R Soc B Biol Sci. 2010;278(1702):9‐17. doi:10.1098/rspb.2010.1267.
      Guilminot E, Lemoine G, Pelé C, et al. Re‐treatment of whale bones – how to extract degraded fats from weakened bones? J Cult Herit. 2014;15(2):128‐135. doi:10.1016/j.culher.2013.03.008.
      Bas M, García NA, Crespo EA, Cardona L. Intraskeletal variability in stable isotope ratios of C and N among pinnipeds and cetaceans. Mar Mamm Sci. 2020;36(1):375‐385. doi:10.1111/mms.12644.
      Clark CT, Horstmann L, Misarti N. Lipid normalization and stable isotope discrimination in Pacific walrus tissues. Sci Rep. 2019;9(1):5843. doi:10.1038/s41598‐019‐42095‐z.
      Kaehler S, Pakhomov E. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Mar Ecol Prog Ser. 2001;219:299‐304. doi:10.3354/meps219299.
      R Core Team. R: A language and environment for statistical computingPublished Online; 2022. https://www.R-project.org/.
      Kassambara A. rstatix: Pipe‐friendly framework for basic statistical testsPublished Online; 2023. https://CRAN.R-project.org/package=rstatix.
      Blanca MJ, Alarcón R, Arnau J. Non‐normal data: Is ANOVA still a valid option? Psicothema. 2017;29.4:552‐557. doi:10.7334/psicothema2016.383.
      Mangiafico S. rcompanion: Functions to support extension education program evaluationPublished online; 2023. https://CRAN.R-project.org/package=rcompanion.
      Borrell A, Abad‐Oliva N, Gómez‐Campos E, Giménez J, Aguilar A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun Mass Spectrom. 2012;26(14):1596‐1602. doi:10.1002/rcm.6267.
      Pinela AM, Borrell A, Aguilar A. Variation in δ15N and δ13C stable isotope values in common dolphins (Delphinus spp.) worldwide, with particular emphasis on the eastern North Atlantic populations. Rapid Commun Mass Spectrom. 2015;29(9):855‐863. doi:10.1002/rcm.7173.
      Gannes LZ, Del Rio CM, Koch P. Natural abundance variations in stable osotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(3):725‐737. doi:10.1016/S1095‐6433(98)01016‐2.
      Aurioles D, Koch PL, Le Boeuf BJ. Differences in foraging location of Mexican and California elephant seals: Evidence from stable isotopes in pups. Mar Mamm Sci. 2006;22(2):326‐338. doi:10.1111/j.1748‐7692.2006.00023.x.
      Sullivan CH, Krueger HW. Carbon isotope analysis of separate chemical phases in modern and fossil bone. Nature. 1981;292(5821):333‐335. doi:10.1038/292333a0.
      Cloyed CS, DaCosta KP, Hodanbosi MR, Carmichael RH. The effects of lipid extraction on δ13C and δ15N values and use of lipid‐correction models across tissues, taxa and trophic groups. Kurle C, ed. Methods Ecol Evol. 2020;11(6):751‐762. doi:10.1111/2041‐210X.13386.
      Post DM. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 2002;83(3):703‐718. doi:10.1890/0012‐9658(2002)083[0703:USITET]2.0.CO;2.
      Doucette JL, Wissel B, Somers CM. Effects of lipid extraction and lipid normalization on stable carbon and nitrogen isotope ratios in double‐crested cormorants: Implications for food web studies. Waterbirds. 2010;33(3):273‐284. doi:10.1675/063.033.0302.
      Elliott KH, Elliott JE. Lipid extraction techniques for stable isotope analysis of bird eggs: Chloroform–methanol leads to more enriched δ13C values than extraction via petroleum ether. J Exp Mar Biol Ecol. 2016;474:54‐57. doi:10.1016/j.jembe.2015.09.017.
      Sotiropoulos MA, Tonn WM, Wassenaar LI. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: Potential consequences for food web studies. Ecol Freshw Fish. 2004;13(3):155‐160. doi:10.1111/j.1600‐0633.2004.00056.x.
      Dobush GR, Ankney CD, Krementz DG. The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can J Zool. 1985;63(8):1917‐1920. doi:10.1139/z85‐285.
      Elliott KH, Davis M, Elliott JE. Equations for lipid normalization of carbon stable isotope ratios in aquatic bird eggs. Chiaradia a, ed. PLoS ONE. 2014;9(1):e83597. doi:10.1371/journal.pone.0083597.
      Yurkowski DJ, Hussey NE, Semeniuk C, Ferguson SH, Fisk AT. Effects of lipid extraction and the utility of lipid normalization models on δ13C and δ15N values in Arctic marine mammal tissues. Polar Biol. 2015;38(2):131‐143. doi:10.1007/s00300‐014‐1571‐1.
      DeSantis LRG, Feranec RS, Southon J, et al. On the relationship between collagen‐ and carbonate‐derived carbon isotopes with implications for the inference of carnivore dietary behavior. Front Ecol Evol. 2022;10:1031383. doi:10.3389/fevo.2022.1031383.
      McConnaughey T, McRoy CP. Food‐web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol. 1979;53(3):257‐262. doi:10.1007/BF00952434.
      Gross A, Kiszka J, Van Canneyt O, Richard P, Ridoux V. A preliminary study of habitat and resource partitioning among co‐occurring tropical dolphins around Mayotte, Southwest Indian Ocean. Estuar Coast Shelf Sci. 2009;84(3):367‐374. doi:10.1016/j.ecss.2009.05.017.
      Kiszka J, Oremus M, Richard P, Poole M, Ridoux V. The use of stable isotope analyses from skin biopsy samples to assess trophic relationships of sympatric delphinids off Moorea (French Polynesia). J Exp Mar Biol Ecol. 2010;395(1–2):48‐54. doi:10.1016/j.jembe.2010.08.010.
      Delannoy Y, Colard T, Le Garff E, et al. Effects of the environment on bone mass: A human taphonomic study. Leg Med. 2016;20:61‐67. doi:10.1016/j.legalmed.2016.04.006.
      Pinzari F, Cornish L, Jungblut AD. Skeleton bones in museum indoor environments offer niches for fungi and are affected by weathering and deposition of secondary minerals. Environ Microbiol. 2020;22(1):59‐75. doi:10.1111/1462‐2920.14818.
      Procopio N, Mein CA, Starace S, Bonicelli A, Williams A. Bone diagenesis in short timescales: Insights from an exploratory proteomic analysis. Biology. 2021;10(6):460. doi:10.3390/biology10060460.
      Huculak MA, Rogers TL. Reconstructing the sequence of events surrounding body disposition based on color staining of bone. J Forensic Sci. 2009;54(5):979‐984. doi:10.1111/j.1556‐4029.2009.01086.x.
      Kerbl FM, DeVilliers P, Litaker M, Eleazer PD. Physical effects of sodium hypochlorite on bone: An ex vivo study. J Endod. 2012;38(3):357‐359. doi:10.1016/j.joen.2011.12.031.
    • Grant Information:
      University of California, San Diego (UCSD); NIH Cell & Molecular Genetics Graduate Training Program; PADI Foundation; Lerner-Gray Fund for Marine Research by the American Museum of Natural History; Jeanne Marie Messier Memorial Endowed Fund (UCSD); American Cetacean Society Los Angeles Chapter John E. Heyning Research Grant; Association for Women in Science San Diego Chapter
    • Accession Number:
      0 (Carbon Isotopes)
      0 (Nitrogen Isotopes)
      9007-34-5 (Collagen)
      0 (Lipids)
    • Publication Date:
      Date Created: 20240801 Date Completed: 20240801 Latest Revision: 20240801
    • Publication Date:
      20240802
    • Accession Number:
      10.1002/rcm.9874
    • Accession Number:
      39089821