Molecular occurrence and genetic identification of Babesia spp. and Theileria spp. in naturally infected cattle from Thailand.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: Germany NLM ID: 8703571 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1955 (Electronic) Linking ISSN: 09320113 NLM ISO Abbreviation: Parasitol Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer International, c1987-
    • Subject Terms:
    • Abstract:
      Piroplasm including Babesia spp. and Theileria spp. in cattle can cause illness that affects livestock productivity, resulting in significant production losses, especially in tropical and subtropical regions such as Thailand. This study aimed to investigate the prevalence of bovine piroplasms and to identify these blood parasites based on the 18S ribosomal RNA gene in cattle in the northeastern part of Thailand. Piroplasmid infections among beef and dairy cattle were examined using nested PCR. Furthermore, amplicon DNA was sequenced and analyzed, and a phylogenetic tree was constructed to determine the genetic diversity and relationships of the parasite in each area. A total of 141 out of 215 (65.6%) cattle were positive for infection with Babesia or Theileria. DNA analysis revealed that infection by Babesia bigemina, Babesia bovis, Theileria orientalis, Theileria sinensis, and Theileria sp. were common piroplasms in cattle in this region, with a high sequence shared identity and similarity with each other and clustered with isolates from other countries. This study provides information on the molecular epidemiology and genetic identification of Babesia spp. and Theileria spp. in beef and dairy cattle to provide a better understanding of piroplasm infection in cattle in this region, which will help control these blood parasites. Moreover, this is the first report identifying T. sinensis circulating among Thai cattle.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Adjou Moumouni PF, Galon EM, Tumwebaze MA, Byamukama B, Ngasaman R, Tiwananthagorn S, Kamyingkird K, Inpankaew T, Xuan X (2023) Tick-borne pathogen detection and its association with alterations in packed cell volume of dairy cattle in Thailand. Animals 13:2844. https://doi.org/10.3390/ani13182844. (PMID: 10.3390/ani131828443776024410525745)
      Aktas M, Dumanli N, Angin M (2004) Cattle infestation by Hyalomma ticks and prevalence of Theileria in Hyalomma species in the east of Turkey. Vet Parasitol 119(1):1–8. https://doi.org/10.1016/j.vetpar.2003.10.013. (PMID: 10.1016/j.vetpar.2003.10.01315036571)
      Aktaş M, Kısadere İ, Özübek S, Cihan H, Salıkov R, Cirak VY (2019) First molecular survey of piroplasm species in cattle from Kyrgyzstan. Parasitol Res 118:2431–2435. https://doi.org/10.1007/s00436-019-06370-2. (PMID: 10.1007/s00436-019-06370-231243541)
      Allsopp MT, Allsopp BA (2006) Molecular sequence evidence for the reclassification of some Babesia species. Ann N Y Acad Sci 1081:509–517. https://doi.org/10.1196/annals.1373.076. (PMID: 10.1196/annals.1373.07617135560)
      Bawm S, Sagara R, Kakisaka K, Thu MJ, Hmoon MM, Htun LL, Win MM, Nonaka N, Nakao R, Suzuki H, Katakura K (2021) Identification, genetic variation, and structural analysis of 18S rRNA of Theileria orientalis and Theileria velifera-like isolates from Myanmar. Parasitol Int 82:102299. https://doi.org/10.1016/j.parint.2021.102299. (PMID: 10.1016/j.parint.2021.10229933540120)
      Cao S, Aboge GO, Terkawi MA, Yu L, Kamyingkird K, Luo Y, Li Y, Goo YK, Yamagishi J, Nishikawa Y, Yokoyama N (2012) Molecular detection and identification of Babesia bovis and Babesia bigemina in cattle in northern Thailand. Parasitol Res 111:1259–1266. https://doi.org/10.1007/s00436-012-2960-4. (PMID: 10.1007/s00436-012-2960-422645033)
      Dhakal M, Gompo TR, Devkota P, Kafle SC, Subedi JR, Gong H, Arima H, Culleton R, Asada M, Pandey K (2023) Molecular detection and identification of piroplasm in cattle from Kathmandu Valley. Nepal Pathogens 12(8):1045. https://doi.org/10.3390/pathogens12081045. (PMID: 10.3390/pathogens1208104537624005)
      Famuyide IM, Takeet MI, Talabi AO, Otesile EB (2020) Molecular detection and identification of piroplasms in semi-intensively managed cattle from Abeokuta. Nigeria Folia Vet 64(4):1–8. https://doi.org/10.2478/fv-2020-0031. (PMID: 10.2478/fv-2020-0031)
      Gebrekidan H, Perera PK, Ghafar A, Abbas T, Gasser RB, Jabbar A (2020) An appraisal of oriental theileriosis and the Theileria orientalis complex, with an emphasis on diagnosis and genetic characterisation. Parasitol Res 119:11–22. https://doi.org/10.1007/s00436-019-06557-7. (PMID: 10.1007/s00436-019-06557-731811422)
      Giglioti R, de Oliveira HN, Okino CH, de Sena Oliveira MC (2018) qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae. Exp Appl Acarol 75:235–240. https://doi.org/10.1007/s10493-018-0260-0. (PMID: 10.1007/s10493-018-0260-029728802)
      Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
      Hashem M, Neamat-Allah AN, Gheith MA (2018) A study on bovine babesiosis and treatment with reference to hematobiochemical and molecular diagnosis. Slov Vet Res 55:165–73. https://doi.org/10.26873/SVR-643-2018. (PMID: 10.26873/SVR-643-2018)
      Hassan MA, Liu J, Rashid M, Iqbal N, Guan G, Yin H, Luo J (2018) Molecular survey of piroplasm species from selected areas of China and Pakistan. Parasit Vectors 1–7. https://doi.org/10.1186/s13071-018-3035-x.
      Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L (2018) The complexity of piroplasms life cycles. Front Cell Infect Microbiol 23(8):248. https://doi.org/10.3389/fcimb.2018.00248. (PMID: 10.3389/fcimb.2018.00248)
      Jia L, Zhao S, Xie S, Li H, Wang H, Zhang S (2020) Molecular prevalence of Theileria infections in cattle in Yanbian, north-eastern China. Parasite 27(19):1–7. https://doi.org/10.1051/parasite/2020017. (PMID: 10.1051/parasite/2020017)
      Jirapattharasate C, Moumouni PF, Cao S, Iguchi A, Liu M, Wang G, Zhou M, Vudriko P, Changbunjong T, Sungpradit S, Ratanakorn P (2016) Molecular epidemiology of bovine Babesia spp. and Theileria orientalis parasites in beef cattle from northern and northeastern Thailand. Parasitol Int 65:62–9. https://doi.org/10.1016/j.parint.2015.10.005. (PMID: 10.1016/j.parint.2015.10.00526475202)
      Jirapattharasate C, Adjou Moumouni PF, Cao S, Iguchi A, Liu M, Wang G, Zhou M, Vudriko P, Efstratiou A, Changbunjong T, Sungpradit S (2017) Molecular detection and genetic diversity of bovine Babesia spp., Theileria orientalis, and Anaplasma marginale in beef cattle in Thailand. Parasitol Res 116:751–762. https://doi.org/10.1007/s00436-016-5345-2. (PMID: 10.1007/s00436-016-5345-228028631)
      Kakati P, Sarmah PC, Ray D, Bhattacharjee K, Sharma RK, Barkalita LM, Sarma DK, Baishya BC, Borah P, Stanley B (2015) Emergence of oriental theileriosis in cattle and its transmission through Rhipicephalus (Boophilus) microplus in Assam. India. Vet World 8:1099. https://doi.org/10.14202/vetworld.2015.1099-1104. (PMID: 10.14202/vetworld.2015.1099-110427047205)
      Kho KL, Amarajothi AD, Koh FX, Panchadcharam C, Nizam QN, Tay ST (2017) The first molecular survey of theileriosis in Malaysian cattle, sheep and goats. Vet Parasitol Reg Stud Reports 10:149–153. https://doi.org/10.1016/j.vprsr.2017.08.003. (PMID: 10.1016/j.vprsr.2017.08.00331014589)
      Koonyosying P, Rittipornlertrak A, Chomjit P, Sangkakam K, Muenthaisong A, Nambooppha B, Srisawat W, Apinda N, Singhla T, Sthitmatee N (2022) Incidence of hemoparasitic infections in cattle from central and northern Thailand. PeerJ 10:e13835. https://doi.org/10.7717/peerj.13835. (PMID: 10.7717/peerj.13835359714319375545)
      Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096. (PMID: 10.1093/molbev/msy096297228875967553)
      Kumar B, Maharana BR, Thakre B, Brahmbhatt NN, Joseph JP (2022) 18S rRNA gene-based Piroplasmid PCR: an assay for rapid and precise molecular screening of Theileria and Babesia species in animals. Acta Parasitol 67:1697–1707. https://doi.org/10.1007/s11686-022-00625-2. (PMID: 10.1007/s11686-022-00625-2361786149523193)
      Lack JB, Reichard MV, Van Den Bussche RA (2012) Phylogeny and evolution of the Piroplasmida as inferred from 18S rRNA sequences. Int J Parasitol 42:353–363. https://doi.org/10.1016/j.ijpara.2012.02.005. (PMID: 10.1016/j.ijpara.2012.02.00522429769)
      Lempereur L, Beck R, Fonseca I, Marques C, Duarte A, Santos M, Zúquete S, Gomes J, Walder G, Domingos A, Antunes S (2017) Guidelines for the detection of Babesia and Theileria parasites. Vector Borne Zoonotic Dis 17:51–65. https://doi.org/10.1089/vbz.2016.1955. (PMID: 10.1089/vbz.2016.195528055573)
      M’ghirbi Y, Hurtado A, Brandika J, Khlif K, Ketata Z, Bouattour A, (2008) A molecular survey of Theileria and Babesia parasites in cattle, with a note on the distribution of ticks in Tunisia. Parasitol Res 103:435–442. https://doi.org/10.1007/s00436-008-0995-3. (PMID: 10.1007/s00436-008-0995-3)
      Ma Q, Liu J, Li Z, Xiang Q, Wang J, Liu A, Li Y, Yin H, Guan G, Luo J (2020) Clinical and pathological studies on cattle experimentally infected with Theileria annulata in China. Pathogens 9:727. https://doi.org/10.3390/pathogens9090727. (PMID: 10.3390/pathogens9090727328993877558396)
      Marendy D, Baker K, Emery D, Rolls P, Stutchbury R (2020) Haemaphysalis longicornis: the life-cycle on dogs and cattle, with confirmation of its vector status for Theileria orientalis in Australia. Vet Parasitol 277:100022. https://doi.org/10.1016/j.vpoa.2019.100022. (PMID: 10.1016/j.vpoa.2019.100022)
      Masatani T, Hayashi K, Andoh M, Tateno M, Endo Y, Asada M, Kusakisako K, Tanaka T, Gokuden M, Hozumi N, Nakadohzono F (2017) Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan. Ticks Tick Borne Dis 8:581–587. https://doi.org/10.1016/j.ttbdis.2017.03.007. (PMID: 10.1016/j.ttbdis.2017.03.00728501503)
      Muhanguzi D, Matovu E, Waiswa C (2010) Prevalence and characterization of Theileria and Babesia species in cattle under different husbandry systems in Western Uganda. Int J Anim Vet Adv 2(2):51–58.
      Nehra AK, Kumari A, Kundave VR, Vohra S, Ram H (2022) Molecular insights into the population structure and haplotype network of Theileria annulata based on the small-subunit ribosomal RNA (18S rRNA) gene. Infect Genet Evol 99:105252. https://doi.org/10.1016/j.meegid.2022.105252. (PMID: 10.1016/j.meegid.2022.10525235183753)
      Ola-Fadunsin SD, Sharma RS, Abdullah DA, Gimba FI, Jesse FF, Sani RA (2020) Molecular detection, prevalence and risk factors of Theileria orientalis infection among cattle in Peninsular Malaysia. Prev Vet Med 180:105027. https://doi.org/10.1016/j.prevetmed.2020.105027. (PMID: 10.1016/j.prevetmed.2020.10502732442824)
      Özübek S, Aktaş M (2019) Genetic diversity of Theileria orientalis from cattle in Turkey. Comp Immunol Microbiol Infect Dis 1(65):132–136. https://doi.org/10.1016/j.cimid.2019.05.015. (PMID: 10.1016/j.cimid.2019.05.015)
      Phipps LP, Hansford KM, Hernández-Triana LM, Golding M, McGinley L, Folly AJ, Vaux AG, de Marco MF, Carter DP, Medlock JM, Johnson N (2022) Detection of Borrelia and Babesia species in Haemaphysalis punctata ticks sampled in Southern England. Ticks Tick Borne Dis 13:101902. https://doi.org/10.1016/j.ttbdis.2022.101902. (PMID: 10.1016/j.ttbdis.2022.10190235042078)
      Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248. (PMID: 10.1093/molbev/msx24829029172)
      Sang C, Yang M, Xu B, Liu G, Yang Y, Kairullayev K, Bauyrzhan O, Hazihan W, Hornok S, Wang Y (2021) Tick distribution and detection of Babesia and Theileria species in Eastern and Southern Kazakhstan. Ticks Tick Borne Dis 12(6):101817. https://doi.org/10.1016/j.ttbdis.2021.101817. (PMID: 10.1016/j.ttbdis.2021.10181734560427)
      Selim A, Attia K, AlKahtani MD, Albohairy FM, Shoulah S (2022) Molecular epidemiology and genetic characterization of Theileria orientalis in cattle. Trop Anim Health Prod 54(3):178. https://doi.org/10.1007/s11250-022-03176-w. (PMID: 10.1007/s11250-022-03176-w35508744)
      Simking P, Saengow S, Bangphoomi K, Sarataphan N, Wongnarkpet S, Inpankaew T, Jittapalapong S, Munkhjargal T, Sivakumar T, Yokoyama N, Igarashi I (2013) The molecular prevalence and MSA-2b gene-based genetic diversity of Babesia bovis in dairy cattle in Thailand. Vet Parasitol 197:642–648. https://doi.org/10.1016/j.vetpar.2013.07.015. (PMID: 10.1016/j.vetpar.2013.07.01523953761)
      Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N (2014) Evolution and genetic diversity of Theileria. Infect Genet Evol 1(27):250–263. https://doi.org/10.1016/j.meegid.2014.07.013. (PMID: 10.1016/j.meegid.2014.07.013)
      Social Science Statistics (2023) Chi-square test calculator. Social Science Statistics, Jeremy Stangroom, https://www.socscistatistics.com/tests/chisquare2/default2.aspx .
      Srionrod N, Nooroong P, Poolsawat N, Minsakorn S, Watthanadirek A, Junsiri W, Sangchuai S, Chawengkirttikul R, Anuracpreeda P (2022) Molecular characterization and genetic diversity of Babesia bovis and Babesia bigemina of cattle in Thailand. Front Cell Infect Microbiol 12:1065963. https://doi.org/10.3389/fcimb.2022.1065963. (PMID: 10.3389/fcimb.2022.1065963365236379744959)
      Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138:3–10. https://doi.org/10.1016/j.vetpar.2006.01.035. (PMID: 10.1016/j.vetpar.2006.01.03516513280)
      Zhou Z, Li K, Sun Y, Shi J, Li H, Chen Y, Yang H, Li X, Wu B, Li X, Wang Z (2019) Molecular epidemiology and risk factors of Anaplasma spp., Babesia spp. and Theileria spp. infection in cattle in Chongqing, China. PloS One 14:e0215585. https://doi.org/10.1371/journal.pone.0221359. (PMID: 10.1371/journal.pone.0221359313064226629066)
    • Grant Information:
      660602/2566 Thailand Science Research and Innovation (TSRI); 660602/2566 Thailand Science Research and Innovation (TSRI); 660602/2566 Thailand Science Research and Innovation (TSRI); 660602/2566 Thailand Science Research and Innovation (TSRI)
    • Contributed Indexing:
      Keywords: Babesiosis; Bovine; Molecular prevalence; Piroplasm; Theileriosis
    • Accession Number:
      0 (RNA, Ribosomal, 18S)
      0 (DNA, Protozoan)
      0 (DNA, Ribosomal)
    • Publication Date:
      Date Created: 20240731 Date Completed: 20240731 Latest Revision: 20240905
    • Publication Date:
      20240905
    • Accession Number:
      10.1007/s00436-024-08299-7
    • Accession Number:
      39083117