References: Abdel-Rahman MA, Hassan SED, El-Din MN, Azab MS, El-Belely EF, Alrefaey HMA, Elsakhawy T (2020) One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Appl Sci 2:573. https://doi.org/10.1007/s42452-020-2351-x. (PMID: 10.1007/s42452-020-2351-x)
Asif A, Mohsin H, Tanvir R, Rehman Y (2017) Revisiting the mechanisms involved in Calcium Chloride Induced Bacterial Transformation. Front Microbiol 8:2169. https://doi.org/10.3389/fmicb.2017.02169. (PMID: 10.3389/fmicb.2017.02169291634475681917)
Balantic K, Weiss VU, Allmaier G, Kramar P (2022) Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 143:107988. https://doi.org/10.1016/j.bioelechem.2021.107988. (PMID: 10.1016/j.bioelechem.2021.10798834763170)
Cadoret F, Soscia C, Voulhoux R (2014) Gene transfer: transformation/electroporation. Methods Mol Biol 1149:11–15. https://doi.org/10.1007/978-1-4939-0473-0_2. (PMID: 10.1007/978-1-4939-0473-0_224818892)
Chan W, Verma CS, Lane DP, Gan SK (2013) A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep 33:e00086. https://doi.org/10.1042/BSR20130098. (PMID: 10.1042/BSR20130098242290753860579)
Das S, Dash H (2015) Cloning and Transformation. Microbial Biotechnology- A Laboratory Manual for Bacterial systems. Springer, New Delhi, India. https://doi.org/10.1007/978-81-322-2095-4. (PMID: 10.1007/978-81-322-2095-4)
Day MJ (2004) Transformation. In: Miller RV, Day MJ (eds) Microbial Evolution. American Society of Microbiology, Washington, DC, pp 158–172.
Deplazes E, Tafalla BD, Murphy C, White J, Cranfield CG, Garcia A (2021) Calcium ion binding at the lipid–water interface alters the ion permeability of phospholipid bilayers. Langmuir 37:14026–14033. https://doi.org/10.1021/acs.langmuir.1c02016. (PMID: 10.1021/acs.langmuir.1c0201634784471)
Diver JM, Bryan LE, Sokol PA (1990) Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem 189:75–79. https://doi.org/10.1016/0003-2697(90)90046-c. (PMID: 10.1016/0003-2697(90)90046-c2126169)
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/s0022-2836(83)80284-8. (PMID: 10.1016/s0022-2836(83)80284-86345791)
Irani VR, Rowe JJ (1997) Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2 + and heat. Biotechniques 22:54–56. https://doi.org/10.2144/97221bm09. (PMID: 10.2144/97221bm098994645)
Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007 158:767 – 78. https://doi.org/10.1016/j.resmic.2007.09.004.
Kaur D, Singh RP, Gupta S (2022) Screening and characterization of next–generation Biofuels producing bacterial strains. Curr Microbiol 79:85. https://doi.org/10.1007/s00284-022-02781-0. (PMID: 10.1007/s00284-022-02781-035129690)
Kilb A, Burghard-Schrod M, Holtrup S, Graumann PL (2023) Uptake of environmental DNA in Bacillus subtilis occurs all over the cell surface through a dynamic pilus structure. PLoS Genet 19:e1010696. https://doi.org/10.1371/journal.pgen.1010696. (PMID: 10.1371/journal.pgen.10106963781606510564135)
Macfadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ (2001) Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40:700–707. https://doi.org/10.1046/j.1365-2958.2001.02419.x. (PMID: 10.1046/j.1365-2958.2001.02419.x11359575)
Muschiol S, Balaban M, Normark S, Henriques-Normark B (2015) Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. BioEssays 37:426–435. https://doi.org/10.1002/bies.201400125. (PMID: 10.1002/bies.201400125256400844405041)
Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203. https://doi.org/10.1016/s0378-1119(98)00601-5. (PMID: 10.1016/s0378-1119(98)00601-510023058)
Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1. https://doi.org/10.1128/mr.49.1.1-32.1985. (PMID: 10.1128/mr.49.1.1-32.19852580220373015)
Nolan LM, Turnbull L, Katrib M, Osvath SR, Losa D, Lazenby JJ, Whitchurch CB (2020) Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology 166:995–1003. https://doi.org/10.1099/mic.0.000956. (PMID: 10.1099/mic.0.000956327499537660920)
Olsen R, DeBusscher G, Mc-Combie WR (1982) Development of broad-host range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 150:60–69. https://doi.org/10.1128/jb.150.1.60-69.1982. (PMID: 10.1128/jb.150.1.60-69.19826277872220082)
Panja S, Aich P, Jana B, Basu T (2008) How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol Membr Biol 25:411–422. https://doi.org/10.1080/09687680802187765. (PMID: 10.1080/0968768080218776518651316)
Ren J, Karna S, Lee HM, Yoo SM, Na D (2019) Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl Microbiol Biotechnol 103:9205–9215. https://doi.org/10.1007/s00253-019-10173-x. (PMID: 10.1007/s00253-019-10173-x31650193)
Rodriguez-Beltran J, Elabed H, Gaddour K, Blazquez J, Rodriguez-Rojas A (2012) Simple DNA transformation in Pseudomonas based on the Yoshida effect. J Microbiol Methods 89:95–98. https://doi.org/10.1016/j.mimet.2012.02.013. (PMID: 10.1016/j.mimet.2012.02.01322405834)
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Srivastava S (2013) Transformation. In: Genetics of bacteria. Springer, India. https://doi.org/10.1007/978-81-322-1090-0_4.
Verkleji AJ, de Krutff B, Ververgaert PH, Tocanne JF, van Deenen LL (1974) The influence of pH, Ca 2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta 339:432–437. https://doi.org/10.1016/0005-2736(74)90171-0.
Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3. https://doi.org/10.1093/nar/gkn884. (PMID: 10.1093/nar/gkn88419004868)
Zhang Y, Nunoura T, Nishiura D, Hirai M, Shimamura S, Kurosawa K, Ishiwata C, Deguchi S (2020) A single-molecule counting approach for convenient and ultrasensitive measurement of restriction digest efficiencies. PLoS ONE 15:e0244464. https://doi.org/10.1371/journal.pone.0244464. (PMID: 10.1371/journal.pone.0244464333827797775078)
No Comments.