Optimizing CaCl 2 -mediated transformation of Pseudomonas aeruginosa SDK-6 with pJN105 using OFAT: A novel and efficient cloning approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Kaur D;Kaur D;Kaur D; Singh V; Singh V; Gupta S; Gupta S
  • Source:
    Current genetics [Curr Genet] 2024 Jul 31; Vol. 70 (1), pp. 11. Date of Electronic Publication: 2024 Jul 31.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: United States NLM ID: 8004904 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0983 (Electronic) Linking ISSN: 01728083 NLM ISO Abbreviation: Curr Genet Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Springer International
      Original Publication: [New York] Springer International.
    • Subject Terms:
    • Abstract:
      Cloning and expression of a gene in the desired host is required for optimum production in recombinant strains. The present research is the first attempt to optimize the physiological conditions for the transformation of Pseudomonas aeruginosa SDK-6 with pJN105. Different factors, such as inoculum size, incubation period, heat shock temperature, and heat shock time were optimized using one factor at a time (OFAT) followed by the selection of transformants using gentamicin resistance marker. The maximum number of transformants (2.002 ± 0.077 × 10 5 cfu/ µg of plasmid DNA) were reported with 0.5% (v/v) inoculum, an incubation period of 3 h, and heat shock treatment at 50 °C for 1 min. An overall 12-fold increase in transformation efficiency was observed. The presence of a 6055 bp band on agarose gel confirmed the transformation of Pseudomonas aeruginosa with the vector pJN105.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Abdel-Rahman MA, Hassan SED, El-Din MN, Azab MS, El-Belely EF, Alrefaey HMA, Elsakhawy T (2020) One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Appl Sci 2:573. https://doi.org/10.1007/s42452-020-2351-x. (PMID: 10.1007/s42452-020-2351-x)
      Asif A, Mohsin H, Tanvir R, Rehman Y (2017) Revisiting the mechanisms involved in Calcium Chloride Induced Bacterial Transformation. Front Microbiol 8:2169. https://doi.org/10.3389/fmicb.2017.02169. (PMID: 10.3389/fmicb.2017.02169291634475681917)
      Balantic K, Weiss VU, Allmaier G, Kramar P (2022) Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 143:107988. https://doi.org/10.1016/j.bioelechem.2021.107988. (PMID: 10.1016/j.bioelechem.2021.10798834763170)
      Cadoret F, Soscia C, Voulhoux R (2014) Gene transfer: transformation/electroporation. Methods Mol Biol 1149:11–15. https://doi.org/10.1007/978-1-4939-0473-0_2. (PMID: 10.1007/978-1-4939-0473-0_224818892)
      Chan W, Verma CS, Lane DP, Gan SK (2013) A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep 33:e00086. https://doi.org/10.1042/BSR20130098. (PMID: 10.1042/BSR20130098242290753860579)
      Das S, Dash H (2015) Cloning and Transformation. Microbial Biotechnology- A Laboratory Manual for Bacterial systems. Springer, New Delhi, India. https://doi.org/10.1007/978-81-322-2095-4. (PMID: 10.1007/978-81-322-2095-4)
      Day MJ (2004) Transformation. In: Miller RV, Day MJ (eds) Microbial Evolution. American Society of Microbiology, Washington, DC, pp 158–172.
      Deplazes E, Tafalla BD, Murphy C, White J, Cranfield CG, Garcia A (2021) Calcium ion binding at the lipid–water interface alters the ion permeability of phospholipid bilayers. Langmuir 37:14026–14033. https://doi.org/10.1021/acs.langmuir.1c02016. (PMID: 10.1021/acs.langmuir.1c0201634784471)
      Diver JM, Bryan LE, Sokol PA (1990) Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem 189:75–79. https://doi.org/10.1016/0003-2697(90)90046-c. (PMID: 10.1016/0003-2697(90)90046-c2126169)
      Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/s0022-2836(83)80284-8. (PMID: 10.1016/s0022-2836(83)80284-86345791)
      Irani VR, Rowe JJ (1997) Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2 + and heat. Biotechniques 22:54–56. https://doi.org/10.2144/97221bm09. (PMID: 10.2144/97221bm098994645)
      Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007 158:767 – 78. https://doi.org/10.1016/j.resmic.2007.09.004.
      Kaur D, Singh RP, Gupta S (2022) Screening and characterization of next–generation Biofuels producing bacterial strains. Curr Microbiol 79:85. https://doi.org/10.1007/s00284-022-02781-0. (PMID: 10.1007/s00284-022-02781-035129690)
      Kilb A, Burghard-Schrod M, Holtrup S, Graumann PL (2023) Uptake of environmental DNA in Bacillus subtilis occurs all over the cell surface through a dynamic pilus structure. PLoS Genet 19:e1010696. https://doi.org/10.1371/journal.pgen.1010696. (PMID: 10.1371/journal.pgen.10106963781606510564135)
      Macfadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ (2001) Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40:700–707. https://doi.org/10.1046/j.1365-2958.2001.02419.x. (PMID: 10.1046/j.1365-2958.2001.02419.x11359575)
      Muschiol S, Balaban M, Normark S, Henriques-Normark B (2015) Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. BioEssays 37:426–435. https://doi.org/10.1002/bies.201400125. (PMID: 10.1002/bies.201400125256400844405041)
      Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203. https://doi.org/10.1016/s0378-1119(98)00601-5. (PMID: 10.1016/s0378-1119(98)00601-510023058)
      Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1. https://doi.org/10.1128/mr.49.1.1-32.1985. (PMID: 10.1128/mr.49.1.1-32.19852580220373015)
      Nolan LM, Turnbull L, Katrib M, Osvath SR, Losa D, Lazenby JJ, Whitchurch CB (2020) Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology 166:995–1003. https://doi.org/10.1099/mic.0.000956. (PMID: 10.1099/mic.0.000956327499537660920)
      Olsen R, DeBusscher G, Mc-Combie WR (1982) Development of broad-host range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 150:60–69. https://doi.org/10.1128/jb.150.1.60-69.1982. (PMID: 10.1128/jb.150.1.60-69.19826277872220082)
      Panja S, Aich P, Jana B, Basu T (2008) How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol Membr Biol 25:411–422. https://doi.org/10.1080/09687680802187765. (PMID: 10.1080/0968768080218776518651316)
      Ren J, Karna S, Lee HM, Yoo SM, Na D (2019) Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl Microbiol Biotechnol 103:9205–9215. https://doi.org/10.1007/s00253-019-10173-x. (PMID: 10.1007/s00253-019-10173-x31650193)
      Rodriguez-Beltran J, Elabed H, Gaddour K, Blazquez J, Rodriguez-Rojas A (2012) Simple DNA transformation in Pseudomonas based on the Yoshida effect. J Microbiol Methods 89:95–98. https://doi.org/10.1016/j.mimet.2012.02.013. (PMID: 10.1016/j.mimet.2012.02.01322405834)
      Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York.
      Srivastava S (2013) Transformation. In: Genetics of bacteria. Springer, India. https://doi.org/10.1007/978-81-322-1090-0_4.
      Verkleji AJ, de Krutff B, Ververgaert PH, Tocanne JF, van Deenen LL (1974) The influence of pH, Ca 2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta 339:432–437. https://doi.org/10.1016/0005-2736(74)90171-0.
      Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3. https://doi.org/10.1093/nar/gkn884. (PMID: 10.1093/nar/gkn88419004868)
      Zhang Y, Nunoura T, Nishiura D, Hirai M, Shimamura S, Kurosawa K, Ishiwata C, Deguchi S (2020) A single-molecule counting approach for convenient and ultrasensitive measurement of restriction digest efficiencies. PLoS ONE 15:e0244464. https://doi.org/10.1371/journal.pone.0244464. (PMID: 10.1371/journal.pone.0244464333827797775078)
    • Contributed Indexing:
      Keywords: Pseudomonas aeruginosa; Heat shock; OFAT; Transformants; pJN105
    • Accession Number:
      M4I0D6VV5M (Calcium Chloride)
    • Publication Date:
      Date Created: 20240731 Date Completed: 20240731 Latest Revision: 20241213
    • Publication Date:
      20241213
    • Accession Number:
      10.1007/s00294-024-01295-5
    • Accession Number:
      39083080