HucMSC extracellular vesicles increasing SATB 1 to activate the Wnt/β-catenin pathway in 6-OHDA-induced Parkinson's disease model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published for the International Union of Biochemistry and Molecular Biology by Taylor & Francis Country of Publication: England NLM ID: 100888706 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-6551 (Electronic) Linking ISSN: 15216543 NLM ISO Abbreviation: IUBMB Life Subsets: MEDLINE
    • Publication Information:
      Original Publication: London ; Philadelphia, PA : Published for the International Union of Biochemistry and Molecular Biology by Taylor & Francis, c1999-
    • Subject Terms:
    • Abstract:
      Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.
      (© 2024 International Union of Biochemistry and Molecular Biology.)
    • References:
      Blauwendraat C, Heilbron K, Vallerga CL, Bandres‐Ciga S, von Coelln R, Pihlstrøm L, et al. Parkinson's disease age at onset genome‐wide association study: defining heritability, genetic loci, and alpha‐synuclein mechanisms. Mov Disord. 2019;34:866–875.
      Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet. 2014;384:545–555.
      Reichmann H, Brandt MD, Klingelhoefer L. The nonmotor features of Parkinson's disease: pathophysiology and management advances. Curr Opin Neurol. 2016;29:467–473.
      Olanow CW, Schapira AH. Therapeutic prospects for Parkinson disease. Ann Neurol. 2013;74:337–347.
      Schapira AHV, Chaudhuri KR, Jenner P. Non‐motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–450.
      Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson's disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. 2017;32:1264–1310.
      Olanow CW. Levodopa is the best symptomatic therapy for PD: nothing more, nothing less. Mov Disord. 2019;34:812–815.
      Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther. 2020;11:519.
      Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells (Dayton, Ohio). 2006;24:781–792.
      Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5:933–946.
      Huang B, Tabata Y, Gao J‐Q. Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Control Release. 2012;162:464–473.
      Li Z, Li Q, Tong K, Zhu J, Wang H, Chen B, et al. BMSC‐derived exosomes promote tendon‐bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats. Stem Cell Res Ther. 2022;13:295.
      Jiang M, Jiang X, Li H, Zhang C, Zhang Z, Wu C, et al. The role of mesenchymal stem cell‐derived EVs in diabetic wound healing. Front Immunol. 2023;14:1136098.
      Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell‐derived exosomes against Parkinson's disease. Neurol Sci. 2023;44:2277–2289.
      Cosenza S, Toupet K, Maumus M, Luz‐Crawford P, Blanc‐Brude O, Jorgensen C, et al. Mesenchymal stem cells‐derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8:1399–1410.
      Long C, Wang J, Gan W, Qin X, Yang R, Chen X. Therapeutic potential of exosomes from adipose‐derived stem cells in chronic wound healing. Front Surg. 2022;9:1030288.
      Zhang Y, Song K, Qi G, Yan R, Yang Y, Li Y, et al. Adipose‐derived exosomal miR‐210/92a cluster inhibits adipose browning via the FGFR‐1 signaling pathway in high‐altitude hypoxia. Sci Rep. 2020;10:14390.
      Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta‐catenin pathway. Stem Cells Transl Med. 2015;4:513–522.
      Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell‐to‐cell communication in the healthy and diseased brain. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130516.
      Chen Y, Fan Z, Dong Q. LncRNA SNHG16 promotes Schwann cell proliferation and migration to repair sciatic nerve injury. Ann Transl Med. 2021;9:1349.
      Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J, Pearson JA, et al. Loss of SATB1 induces p21‐dependent cellular senescence in post‐mitotic dopaminergic neurons. Cell Stem Cell. 2019;25:514.
      Turovsky EA, Turovskaya MV, Fedotova EI, Babaev AA, Tarabykin VS, Varlamova EG. Role of Satb1 and Satb2 transcription factors in the glutamate receptors expression and Ca(2+) signaling in the cortical neurons in vitro. Int J Mol Sci. 2021;22:5968.
      Chakravarthi VP, Borosha S, Ratri A, Ghosh S, Wolfe MW, Rumi MK. SATB homeobox 1 regulated genes in the mouse ectoplacental cone are important for placental development. bioRxiv. September 14, 2020. Available from: https://doi.org/10.1101/2020.09.13.295584.
      Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J, Pearson JA, et al. Loss of SATB1 induces p21‐dependent cellular senescence in post‐mitotic dopaminergic neurons. Cell Stem Cell. 2019;25:514–530.e8.
      Wu D, Murashov AK. MicroRNA‐431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci. 2013;6:35.
      L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Deleidi M, et al. Plasticity of subventricular zone Neuroprogenitors in MPTP (1‐Methyl‐4‐Phenyl‐1,2,3,6‐tetrahydropyridine) mouse model of Parkinson's disease involves cross talk between inflammatory and Wnt/β‐catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci. 2012;32:2062–2085.
      Singh S, Mishra A, Mohanbhai SJ, Tiwari V, Chaturvedi RK, Khurana S, et al. Axin‐2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β‐catenin signaling in rat model of Parkinson's disease. Free Radic Biol Med. 2018;129:73–87.
      Lv J, Wang F, Wang Y, Shen M, Wang X, Zhou XJ. SATB1 expression is correlated with β‐catenin associated epithelial–mesenchymal transition in colorectal cancer. Cancer Biol Ther. 2016;17:254–261.
      Ning M‐Y, Cheng Z‐L, Zhao J. MicroRNA‐448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β‐catenin signalling pathway. J Biochem. 2020;168:41–51.
      Vasileva NS, Kuligina EV, Dymova MA, Savinovskaya YI, Zinchenko ND, Ageenko AB, et al. Transcriptome changes in glioma cells cultivated under conditions of Neurosphere formation. Cell. 2022;11:3106.
      Zhang C, Guo W, Wang S, Di Y, Wu D. Peripheral blood of vitiligo patients‐derived Exosomal MiR‐21‐5p inhibits melanocytes melanogenesis via targeting SATB1. Iran J Public Health. 2022;51:2706–2716.
      Cao J‐Y, Wang B, Tang T‐T, Wen Y, Li Z‐L, Feng ST, et al. Exosomal miR‐125b‐5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics. 2021;11:5248–5266.
      Pu Y, Li C, Qi X, Xu R, Dong L, Jiang Y, et al. Extracellular vesicles from NMN preconditioned mesenchymal stem cells ameliorated myocardial infarction via miR‐210‐3p promoted angiogenesis. Stem Cell Rev Rep. 2023;19:1051–1066.
      Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:3.22.
      Lv Q, Deng J, Chen Y, Wang Y, Liu B, Liu J. Engineered human adipose stem‐cell‐derived exosomes loaded with miR‐21‐5p to promote diabetic cutaneous wound healing. Mol Pharm. 2020;17(5):1723–1733.
      Gu E, Chen W‐Y, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2:335–345.
      Wiklander OPB, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mäger I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316.
      Liu X, Shao R, Li M, Yang G. Edaravone protects neurons in the rat substantia nigra against 6‐hydroxydopamine‐induced oxidative stress damage. Cell Biochem Biophys. 2014;70:1247–1254.
      Sun D, Gao G, Zhong B, Zhang H, Ding S, Sun Z, et al. NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice. Behav Brain Funct. 2021;17:1–4.
      Wang J‐H, Lei X, Cheng X‐R, Zhang X‐R, Liu G, Cheng JP, et al. LW‐AFC, a new formula derived from Liuwei Dihuang decoction, ameliorates behavioral and pathological deterioration via modulating the neuroendocrine‐immune system in PrP‐hAβPPswe/PS1ΔE9 transgenic mice. Alzheimers Res Ther. 2016;8:57.
      Guo H, Ruan C, Zhan X, Pan H, Luo Y, Gao K. Crocetin protected human hepatocyte LO2 cell from TGF‐β‐induced oxygen stress and apoptosis but promoted proliferation and autophagy via AMPK/m‐TOR pathway. Front Public Health. 2022;10:909125.
      Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, et al. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol. 2022;10:949724.
      Shen W, You T, Xu W, Xie Y, Wang Y, Cui M. Rapid and widespread distribution of intranasal small extracellular vesicles derived from mesenchymal stem cells throughout the brain potentially via the perivascular pathway. Pharmaceutics. 2023;15:2578.
      Qu Q, Wang L, Bing W, Bi Y, Zhang C, Jing X, et al. miRNA‐126‐3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome‐mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther. 2020;11:464.
      Zhang Y, Deng W, Wang W, Song A, Mukama O, Deng S, et al. MicroRNA‐206 down‐regulated human umbilical cord mesenchymal stem cells alleviate cognitive decline in D‐galactose‐induced aging mice. Cell Death Dis. 2022;8:304.
      Li K, Yan G, Huang H, Zheng M, Ma K, Cui X, et al. Anti‐inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages. J Nanobiotechnol. 2022;20:38.
      Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, et al. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnol. 2021;19:274.
      Lorzadeh S, Kohan L, Ghavami S, Azarpira N. Autophagy and the Wnt signaling pathway: a focus on Wnt/β‐catenin signaling. Biochim Biophys Acta, Mol Cell Res. 2021;1868:118926.
      Mizushima N, Yoshimorim T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326.
      Aguilera Y, Mellado‐Damas N, Olmedo‐Moreno L, López V, Panadero‐Morón C, Benito M, et al. Preclinical safety evaluation of intranasally delivered human mesenchymal stem cells in juvenile mice. Cancer. 2021;13:1169.
      Villar‐Gómez N, Ojeda‐Hernandez DD, López‐Muguruza E, García‐Flores S, Bonel‐García N, Benito‐Martín MS, et al. Nose‐to‐brain: the next step for stem cell and biomaterial therapy in neurological disorders. Cell. 2022;11:3095.
      Zhao J, Yang J, Jiao J, Wang X, Zhao Y, Zhang L. Biomedical applications of artificial exosomes for intranasal drug delivery. Front Bioeng Biotechnol. 2023;11:1271489.
      Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5:709–733.
      Gotoh S, Kawabori M, Fujimura M. Intranasal administration of stem cell‐derived exosomes for central nervous system diseases. Neural Regen Res. 2024;19:1249–1255.
      de Castro F, Pusic KM, Kraig RP, Pusic AD. IFNγ‐stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes. PLoS One. 2021;16:e0255778.
      Perets N, Betzer O, Shapira R, Brenstein S, Angel A, Sadan T, et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019;19:3422–3431.
      Venkat P, Cui CC, Chopp M, Zacharek A, Wang FJ, Shen Y, et al. MiR‐126 mediates brain endothelial cell exosome treatment‐induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke. 2019;50:2865–2874.
      Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci. 2009;29:15923–15932.
      Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol. 2005;77:128–138.
      Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8.
      Wang Z, Yang X, Chu X, Zhang J, Zhou H, Shen Y, et al. The structural basis for the oligomerization of the N‐terminal domain of SATB1. Nucleic Acids Res. 2012;40:4193–4202.
      Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5:771–781.
      Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N. The complexity of PDZ domain‐mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology. 2004;47:724–733.
      Chang BH, Gujral TS, Karp ES, BuKhalid R, Grantcharova VP, MacBeath G. A systematic family‐wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ‐PDZ interactions. Chem Biol. 2011;18:1143–1152.
      Sahtoe DD, van Dijk WJ, El OF, Ekkebus R, Ovaa H, Sixma TK. Mechanism of UCH‐L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell. 2015;57:887–900.
      Li J, Li J, Miyahira A, Sun J, Liu Y, Cheng G, et al. Crystal structure of the ubiquitin‐like domain of human TBK1. Protein Cell. 2012;3:383–391.
      Notani D, Gottimukkala KP, Jayani RS, Limaye AS, Damle MV, Mehta S, et al. Global regulator SATB1 recruits beta‐catenin and regulates T(H)2 differentiation in Wnt‐dependent manner. PLoS Biol. 2010;8:e1000296.
      Wu Q, Wu G, Li JX. Effect of hypoxia on expression of placental trophoblast cells SATB1 and beta‐catenin and its correlation with the pathogenesis of preeclampsia. Asian Pac J Trop Med. 2016;9:567–571.
      Fromberg A, Rabe M, Oppermann H, Gaunitz F, Aigner A. Analysis of cellular and molecular antitumor effects upon inhibition of SATB1 in glioblastoma cells. BMC Cancer. 2017;17:3.
      Petherick KJ, Williams AC, Lane JD, Ordonez‐Moran P, Huelsken J, Collard TJ, et al. Autolysosomal beta‐catenin degradation regulates Wnt‐autophagy‐p62 crosstalk. EMBO J. 2013;32:1903–1916.
      Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, et al. The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep. 2014;4:6010.
      Nie H, Maika SD, Tucker PW, Gottlieb PD. A role for SATB1, a nuclear matrix association region‐binding protein, in the development of CD8SP thymocytes and peripheral T Lymphocytes1. J Immunol. 2005;174:4745–4752.
      Zheng M, Xing W, Liu Y, Li M, Zhou H. Tetramerization of SATB1 is essential for regulating of gene expression. Mol Cell Biochem. 2017;430:171–178.
      Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi‐Shigematsu T. The MAR‐binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T‐cell development. Genes Dev. 2000;14:521–535.
      Zelenka T, Papamatheakis D‐A, Tzerpos P, Panagopoulos G, Tsolis KC, Papadakis VM, et al. A novel SATB1 protein isoform with different biophysical properties. Front Cell Dev Biol. 2023;11:1242481.
      Hu Z, Müller S, Qian G, Xu J, Kim S, Chen Z, et al. HPV16 oncoprotein regulates the translocation of β‐catenin via activation of EGFR. Cancer. 2015;121:214–225.
      Clevers H. Wnt/beta‐catenin signaling in development and disease. Cell. 2006;127:469–480.
      Sedwick C. SATB1 makes a splash in T cell Wnt signaling. PLoS Biol. 2010;8:e1000295.
      Yan B, Luo J, Kaltenmeier C, Du Q, Stolz DB, Loughran P, et al. Interferon regulatory Factor‐1 (IRF1) activates autophagy to promote liver ischemia/reperfusion injury by inhibiting beta‐catenin in mice. PLoS One. 2020;15:e0239119.
      Ndoye A, Budina‐Kolomets A, Kugel CH 3rd, Webster MR, Kaur A, Behera R, et al. ATG5 mediates a positive feedback loop between Wnt signaling and autophagy in melanoma. Cancer Res. 2017;77:5873–5885.
      He G, Nie J‐J, Liu X, Ding Z, Luo P, Liu Y, et al. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β‐catenin via HIF‐1α/BNIP3/LC3B‐mediated mitophagy pathway. Bioactive Mater. 2022;19:690–702.
      Qi H, Fu X, Li Y, Pang X, Chen S, Zhu X, et al. SATB1 promotes epithelial‐mesenchymal transition and metastasis in prostate cancer. Oncol Lett. 2017;13:2577–2582.
      Cai S, Lee CC, Kohwi‐Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006;38:1278–1288.
      Han HJ, Russo J, Kohwi Y, Kohwi‐Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452:187–193.
      Ramanujam PL, Mehrotra S, Kumar RP, Verma S, Deshpande G, Mishra RK, et al. Global chromatin organizer SATB1 acts as a context‐dependent regulator of the Wnt/Wg target genes. Sci Rep. 2021;11:3385.
      Hu P, Cheng B, He Y, Wei Z, Wu D, Meng Z. Autophagy suppresses proliferation of HepG2 cells via inhibiting glypican‐3/wnt/beta‐catenin signaling. Onco Targets Ther. 2018;11:193–200.
      Garavaglia B, Vallino L, Ferraresi A, Esposito A, Salwa A, Vidoni C, et al. Butyrate inhibits colorectal cancer cell proliferation through autophagy degradation of beta‐catenin regardless of APC and beta‐catenin mutational status. Biomedicine. 2022;10:1131.
      Urano Y, Mori C, Fuji A, Konno K, Yamamoto T, Yashirogi S, et al. 6‐hydroxydopamine induces secretion of PARK7/DJ‐1 via autophagy‐based unconventional secretory pathway. Autophagy. 2018;14:1943–1958.
      Montazersaheb S, Ehsani A, Fathi E, Farahzadi R, Vietor I. An overview of autophagy in hematopoietic stem cell transplantation. Front Bioeng Biotechnol. 2022;10:849768.
      Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–175.
      Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–5728.
      Bampton ETW, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with Endo/lysosomes. Autophagy. 2005;1:23–36.
      Klionsky DJ, Abdel‐Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 2021;17:1–382.
      Zhuang X‐X, Wang S‐F, Tan Y, Song J‐X, Zhu Z, Wang ZY, et al. Pharmacological enhancement of TFEB‐mediated autophagy alleviated neuronal death in oxidative stress‐induced Parkinson's disease models. Cell Death Dis. 2020;11:128.
    • Grant Information:
      2023GXNSFAA026137 Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation; Z20170932 Guangxi Zhuang Autonomous Region Health and Family Planning Commission; 2018YFA0108304 National Natural Science Foundation of China; Z20190247 Foundation of Self-funded Scientific Research Subject of Guangxi Zhuang Autonomous Region Health Commission
    • Contributed Indexing:
      Keywords: Parkinson's disease; SATB 1; Wnt/β‐catenin; autophagy; extracellular vesicles
    • Accession Number:
      8HW4YBZ748 (Oxidopamine)
      0 (Matrix Attachment Region Binding Proteins)
      0 (beta Catenin)
    • Publication Date:
      Date Created: 20240731 Date Completed: 20241121 Latest Revision: 20241121
    • Publication Date:
      20241121
    • Accession Number:
      10.1002/iub.2893
    • Accession Number:
      39082886