A Comprehensive Review of CO 2 Hydrogenation into Formate/Formic Acid Catalyzed by Whole Cell Bacteria.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101294643 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1861-471X (Electronic) Linking ISSN: 1861471X NLM ISO Abbreviation: Chem Asian J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim, Germany : Wiley-VCH, c2006-
    • Subject Terms:
    • Abstract:
      The increasing levels of carbon dioxide (CO 2 ) in the atmosphere, primarily due to the use of fossil fuels, pose a significant threat to the environment and necessitate urgent action to mitigate climate change. Carbon capture and utilization technologies that can convert CO 2 into economically valuable compounds have gained attention as potential solutions. Among these technologies, biocatalytic CO 2 hydrogenation using bacterial whole cells shows promise for the efficient conversion of CO 2 into formate, a valuable chemical compound. Although it was discovered nearly a century ago, comprehensive reviews focusing on the utilization of whole-cell bacteria as the biocatalyst in this area remain relatively limited. Therefore, this review provides an analysis of the progress, strategies, and key findings in this field. It covers the use of living cells, resting cells, or genetically modified bacteria as biocatalysts to convert CO 2 into formate, either naturally or with the integration of electrochemical and protochemical techniques as sources of protons and electrons. By consolidating the current knowledge in this field, this review article aims to serve as a valuable resource for researchers and practitioners interested in understanding the recent progress, challenges, and potential applications of bacterial whole cell catalyzed CO 2 hydrogenation into formate.
      (© 2024 Wiley-VCH GmbH.)
    • References:
      P. Smith, S. J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, E. Kato, R. B. Jackson, A. Cowie, E. Kriegler, D. P. Van Vuuren, J. Rogelj, P. Ciais, J. Milne, J. G. Canadell, D. McCollum, G. Peters, R. Andrew, V. Krey, G. Shrestha, P. Friedlingstein, T. Gasser, A. Grübler, W. K. Heidug, M. Jonas, C. D. Jones, F. Kraxner, E. Littleton, J. Lowe, J. R. Moreira, N. Nakicenovic, M. Obersteiner, A. Patwardhan, M. Rogner, E. Rubin, A. Sharifi, A. Torvanger, Y. Yamagata, J. Edmonds, C. Yongsung, Nat. Clim. Change 2016, 6, 42–50.
      K. Tanaka, B. C. O'Neill, Nat. Clim. Change 2018, 8, 319–324.
      O. Hoegh-Guldberg, D. Jacob, M. Taylor, T. Guillén Bolaños, M. Bindi, S. Brown, I. A. Camilloni, A. Diedhiou, R. Djalante, K. Ebi, F. Engelbrecht, J. Guiot, Y. Hijioka, S. Mehrotra, C. W. Hope, A. J. Payne, H. O. Pörtner, S. I. Seneviratne, A. Thomas, R. Warren, G. Zhou, Science 2019, 365, 1263–1275.
      D. I. A. McKay, A. Staal, J. F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J. Rockström, T. M. Lenton, Science 2022, 377, 1171–1182.
      T. Hasegawa, S. Fujimori, P. Havlík, H. Valin, B. L. Bodirsky, J. C. Doelman, T. Fellmann, P. Kyle, J. F. L. Koopman, H. Lotze-Campen, D. Mason-D'Croz, Y. Ochi, I. Pérez Domínguez, E. Stehfest, T. B. Sulser, A. Tabeau, K. Takahashi, J. Takakura, H. van Meijl, W. J. van Zeist, K. Wiebe, P. Witzke, Nat. Clim. Change 2018, 8, 699–703.
      K. Warner, M. Hamza, A. Oliver-Smith, F. Renaud, A. Julca, Nat. Hazards 2010, 55, 689–715.
      L. Dray, A. W. Schäfer, C. Grobler, C. Falter, F. Allroggen, M. E. J. Stettler, S. R. H. Barrett, Nat. Clim. Change 2022, 12, 956–962.
      K. Rennert, F. Errickson, B. C. Prest, L. Rennels, R. G. Newell, W. Pizer, C. Kingdon, J. Wingenroth, R. Cooke, B. Parthum, D. Smith, K. Cromar, D. Diaz, F. C. Moore, U. K. Müller, R. J. Plevin, A. E. Raftery, H. Ševčíková, H. Sheets, J. H. Stock, T. Tan, M. Watson, T. E. Wong, D. Anthoff, Nature 2022, 610, 687–692.
      F. Wang, J. D. Harindintwali, Z. Yuan, M. Wang, F. Wang, S. Li, Z. Yin, L. Huang, Y. Fu, L. Li, S. X. Chang, L. Zhang, J. Rinklebe, Z. Yuan, Q. Zhu, L. Xiang, D. C. W. Tsang, L. Xu, X. Jiang, J. Liu, N. Wei, M. Kästner, Y. Zou, Y. S. Ok, J. Shen, D. Peng, W. Zhang, D. Barceló, Y. Zhou, Z. Bai, B. Li, B. Zhang, K. Wei, H. Cao, Z. Tan, L. bin Zhao, X. He, J. Zheng, N. Bolan, X. Liu, C. Huang, S. Dietmann, M. Luo, N. Sun, J. Gong, Y. Gong, F. Brahushi, T. Zhang, C. Xiao, X. Li, W. Chen, N. Jiao, J. Lehmann, Y. G. Zhu, H. Jin, A. Schäffer, J. M. Tiedje, J. M. Chen, Innovation 2021, 2, 100108–100130.
      C. Chen, J. F. Khosrowabadi Kotyk, S. W. Sheehan, Chem 2018, 4, 2571–2586.
      S. Roy, A. Cherevotan, S. C. Peter, ACS Energy Lett. 2018, 3, 1938–1966.
      X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, S. Ping Lau, Angew. Chem. Int. Ed. 2022, 61, e202211396.
      J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci. 2017, 4, 1–29.
      A. Olivier, A. Desgagnés, E. Mercier, M. C. Iliuta, Ind. Eng. Chem. Res. 2023, 62, 5714–5749.
      R. E. Siegel, S. Pattanayak, L. A. Berben, ACS Catal. 2023, 13, 766–784.
      S. Valluri, V. Claremboux, S. Kawatra, J. Environ. Sci. 2022, 113, 322–344.
      Y. Zheng, W. Zhang, Y. Li, J. Chen, B. Yu, J. Wang, L. Zhang, J. Zhang, Nano Energy 2017, 40, 512–539.
      S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T. E. Rufford, J. Mater. Chem. A 2020, 8, 1511–1544.
      K. Elouarzaki, V. Kannan, V. Jose, H. S. Sabharwal, J. M. Lee, Adv. Energy Mater. 2019, 9, 1–33.
      Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 2017, 3, 560–587.
      E. Sapountzaki, U. Rova, P. Christakopoulos, I. Antonopoulou, ChemSusChem 2023, 16, e202202312.
      S. Schlager, A. Dibenedetto, M. Aresta, D. H. Apaydin, L. M. Dumitru, H. Neugebauer, N. S. Sariciftci, Energy Technol. 2017, 5, 812–821.
      P. Intasian, K. Prakinee, A. Phintha, D. Trisrivirat, N. Weeranoppanant, T. Wongnate, P. Chaiyen, Chem. Rev. 2021, 121, 10367–10451.
      L. Luan, X. Ji, B. Guo, J. Cai, W. Dong, Y. Huang, S. Zhang, Biotechnol. Adv. 2023, 63, 108098–108125.
      S. Kondaveeti, I. M. Abu-Reesh, G. Mohanakrishna, M. Bulut, D. Pant, Front. Energy Res. 2020, 8, 1–24.
      J. Wachtmeister, D. Rother, Curr. Opin. Biotechnol. 2016, 42, 169–177.
      J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Han, C. Yang, Chem. Soc. Rev. 2015, 44, 5981–6000.
      N. Van Duc Long, J. Lee, K. K. Koo, P. Luis, M. Lee, Energies 2017, 10, 1–19.
      S. Bierbaumer, M. Nattermann, L. Schulz, R. Zschoche, T. J. Erb, C. K. Winkler, M. Tinzl, S. M. Glueck, Chem. Rev. 2023, 123, 5702–5754.
      T. B. Madavi, S. Chauhan, A. Keshri, H. Alavilli, K. Y. Choi, S. D. V. N. Pamidimarri, Biofuels Bioprod. Biorefin. 2022, 16, 859–876.
      P. Tufvesson, J. Lima-Ramos, M. Nordblad, J. M. Woodley, Org. Process Res. Dev. 2011, 15, 266–274.
      B. Lin, Y. Tao, Microb. Cell Fact. 2017, 16, 1–12.
      H. Fukuda, S. Hama, S. Tamalampudi, H. Noda, Trends Biotechnol. 2008, 26, 668–673.
      H. W. Gibson, Chem. Rev. 1969, 69, 673–692.
      S. Zhai, S. Jiang, C. Liu, Z. Li, T. Yu, L. Sun, G. Ren, W. Deng, J. Phys. Chem. Lett. 2022, 13, 8586–8600.
      I. A. C. Pereira, Science 2013, 342, 1329–1330.
      N. Kalmoukidis, A. Barus, S. Staikos, M. Taube, F. Mousazadeh, and A. A. Kiss, Chem. Eng. Res. Des. 2024, 210, 425–436.
      S. D. Sheet, ICIS Chem. Bus. 2017, 1, 1–12.
      I. A. Zolotarskii, T. V. Andrushkevich, G. Y. Popova, S. Stompel, V. O. Efimov, V. B. Nakrokhin, L. Y. Zudilina, N. V. Vernikovskaya, Chem. Eng. J. 2014, 238, 111–119.
      T. O. Bello, A. E. Bresciani, C. A. O. Nascimento, R. M. B. Alves, Chem. Eng. Sci. 2021, 242, 116731.
      K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118, 372–433.
      H. Wen, Y. Liu, S. Liu, Z. Peng, X. Wu, H. Yuan, J. Jiang, B. Li, Small 2024, 20, 1–36.
      A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. Dubois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.
      J. Y. Yang, T. A. Kerr, X. S. Wang, J. M. Barlow, J. Am. Chem. Soc. 2020, 142, 19438–19445.
      R. R. Chen, Appl. Microbiol. Biotechnol. 2007, 74, 730–738.
      C. C. Moser, J. M. Keske, R. S. Kurt Warncke, P. Farid, Nature 1992, 355, 796–802.
      R. J. P. Williams, Nature 1995, 376, 643.
      W. Lubitz, H. Ogata, O. Ru, E. Reijerse, Chem. Rev. 2014, 114, 4081.
      H. Ogata, K. Nishikawa, W. Lubitz, Nature 2015, 520, 571–574.
      P. M. Vignais, B. Billoud, Chem. Rev. 2007, 107, 4206–4272.
      J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, Y. Nicolet, J. Fourier, Chem. Rev. 2007, 107, 4273–4303.
      E. V. Filippova, K. M. Polyakov, T. V. Tikhonova, T. N. Stekhanova, K. M. Boǐko, V. O. Popov, Crystallogr. Rep. 2005, 50, 796–800.
      J. G. Ferry, FEMS Microbiol. Lett. 1990, 87, 377–382.
      L. B. Maia, I. Moura, J. J. G. Moura, Inorg. Chim. Acta 2017, 455, 350–363.
      N. S. Rotberg, W. W. Cleland, Biochemistry 1991, 30, 4068–4071.
      H. Dobbek, Coord. Chem. Rev. 2011, 255, 1104–1116.
      S. Amanullah, P. Saha, A. Nayek, M. E. Ahmed, A. Dey, Chem. Soc. Rev. 2021, 50, 3755–3823.
      N. Ladkau, A. Schmid, B. Bühler, Curr. Opin. Biotechnol. 2014, 30, 178–189.
      S. Y. Lee, H. U. Kim, Nat. Biotechnol. 2015, 33, 1061–1072.
      J. Britton, S. Majumdar, G. A. Weiss, Chem. Soc. Rev. 2018, 47, 5891–5918.
      C. C. C. R. de Carvalho, Microb. Biotechnol. 2017, 10, 250–263.
      D. D. Woods, Biochem. J. 1936, 30, 515–527.
      S. Y. Eguchi, N. Nishio, S. Nagai, Appl. Microbiol. Biotechnol. 1985, 22, 148–151.
      K. Schuchmann, V. Müller, Science 2013, 342, 1382–1385.
      M. Roger, F. Brown, W. Gabrielli, F. Sargent, Curr. Biol. 2018, 28, 140–145.e2.
      F. M. Schwarz, V. Müller, Biotechnol. Biofuels 2020, 13, 1–11.
      A. Ruiz-Valencia, D. Benmeziane, N. Pen, E. Petit, V. Bonniol, M. P. Belleville, D. Paolucci, J. Sanchez-Marcano, L. Soussan, Catal. Today 2020, 346, 106–111.
      F. M. Schwarz, F. Oswald, V. Müller, ACS Sustainable Chem. Eng. 2021, 9, 6810–6820.
      A. Alissandratos, H. K. Kim, C. J. Easton, Bioresour. Technol. 2014, 164, 7–11.
      C. Pinske, F. Sargent, MicrobiologyOpen 2016, 5, 721–737.
      F. Leo, F. M. Schwarz, K. Schuchmann, V. Müller, Appl. Microbiol. Biotechnol. 2021, 105, 5861–5872.
      F. M. Schwarz, J. Moon, F. Oswald, V. Müller, Joule 2022, 6, 1304–1319.
      W. M. Wu, R. F. Hickey, M. K. Jain, J. G. Zeikus, Arch. Microbiol. 1993, 159, 57–65.
      C. Kantzow, D. Weuster-Botz, Bioprocess Biosyst. Eng. 2016, 39, 1325–1330.
      C. Mourato, M. Martins, S. M. da Silva, I. A. C. Pereira, Bioresour. Technol. 2017, 235, 149–156.
      F. Oswald, I. K. Stoll, M. Zwick, S. Herbig, J. Sauer, N. Boukis, A. Neumann, Front. Bioeng. Biotechnol. 2018 6, 6.
      M. Roger, T. C. P. Reed, F. Sargent, Appl. Environ. Microbiol. 2021, 87, e00299–21.
      A. M. Klibanov, B. N. Alberti, S. E. Zale, Biotechnol. Bioeng. 1982, 24, 25–36.
      R. Nandi, K. Bhattacharyya, A. N. Bhaduri39, pp. 775–7801992.
      H. K. Nguyen, T. Minato, M. Moniruzzaman, Y. Kiyasu, S. Ogo, K.-S. Yoon, J. Biosci. Bioeng. 2023, 136, 182–189.
      E. Blanchet, Z. Vahlas, L. Etcheverry, Y. Rafrafi, B. Erable, M. L. Délia, A. Bergel, Chem. Eng. J. 2018, 346, 307–316.
      K. Rabaey, R. A. Rozendal, Nat. Rev. Microbiol. 2010, 8, 706–716.
      S. Das, L. Diels, D. Pant, S. A. Patil, M. M. Ghangrekar, J. Electrochem. Soc. 2020, 167, 155510.
      H. Hwang, Y. J. Yeon, S. Lee, H. Choe, M. G. Jang, D. H. Cho, S. Park, Y. H. Kim, Bioresour. Technol. 2015, 185, 35–39.
      J. Jang, B. W. Jeon, Y. H. Kim, Sci. Rep. 2018, 8, 1–7.
      Q. A. T. Le, H. G. Kim, Y. H. Kim, Enzyme Microb. Technol. 2018, 116, 1–5.
      U. T. Phan, B. W. Jeon, Y. H. Kim, Enzyme Microb. Technol. 2023, 168, 110264.
      H. Shi, M. Fu, S. Yuan, Y. Lu, Z. Yang, C. Yue, L. Yao, C. Xue, C. Tang, ACS Sustainable Chem. Eng. 2024, 12, 5544–5554.
      L. Yu, Y. Yuan, J. Tang, S. Zhou, Bioelectrochemistry 2017, 117, 23–28.
      S. Singh, M. T. Noori, N. Verma, Electrochim. Acta 2020, 338, 135887.
      H. Chen, J. Li, Q. Fan, T. Zheng, Y. Zhang, Y. C. Yong, Z. Fang, Chem. Eng. J. 2023, 460, 141863.
      H. Seelajaroen, M. Haberbauer, C. Hemmelmair, A. Aljabour, L. M. Dumitru, A. W. Hassel, N. S. Sariciftci, ChemBioChem 2019, 20, 1196–1205.
      F. F. Özgen, M. E. Runda, S. Schmidt, ChemBioChem 2021, 22, 790–806.
      M. Ihara, Y. Kawano, M. Urano, A. Okabe, PLoS One 2013, 8, 1–8.
      S. F. Rowe, G. Le Gall, E. V. Ainsworth, J. A. Davies, C. W. J. Lockwood, L. Shi, A. Elliston, I. N. Roberts, K. W. Waldron, D. J. Richardson, T. A. Clarke, L. J. C. Jeuken, E. Reisner, J. N. Butt, ACS Catal. 2017, 7, 7558–7566.
      X. Wang, J. Zhang, K. Li, B. An, Y. Wang, C. Zhong, Sci. Adv. 2022, 8, 1–11.
      P. Gupta, N. Verma, Chem. Eng. J. 2022, 446, 137029–137042.
      T. N. Patel, A. H. A. Park, S. Banta, ACS Synth. Biol. 2014, 3, 848–854.
      A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 2017, 117, 9804–9838.
      M. Moniruzzaman, H. Khac Nguyen, Y. Kiyasu, T. Hirose, Y. Handa, T. Koide, S. Ogo, K. S. Yoon, Bioresour. Technol. 2023, 390, 129921–129930.
      S. Ikeyama, Y. Amao, Chem. Lett. 2016, 45, 1259–1261.
    • Grant Information:
      Khulna University of Engineering & Technology (KUET); Vice-Chancellor Award for High Impact Publication in 2023-2024; Kyushu University; 23 K17847 (KY) JSPS KAKENHI; World Premier International Research Center Initiative (WPI), Japan
    • Contributed Indexing:
      Keywords: CO2 reduction; Formate; Hydrogenation; Microbial electro/photosynthesis; Whole cells
    • Accession Number:
      142M471B3J (Carbon Dioxide)
      0 (Formates)
      0YIW783RG1 (formic acid)
    • Publication Date:
      Date Created: 20240730 Date Completed: 20241121 Latest Revision: 20241125
    • Publication Date:
      20241126
    • Accession Number:
      10.1002/asia.202400468
    • Accession Number:
      39080499