Transcriptome analysis of resistant and susceptible Medicago truncatula genotypes in response to spring black stem and leaf spot disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100967807 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2229 (Electronic) Linking ISSN: 14712229 NLM ISO Abbreviation: BMC Plant Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2001-
    • Subject Terms:
    • Abstract:
      Ascochyta blights cause yield losses in all major legume crops. Spring black stem (SBS) and leaf spot disease is a major foliar disease of Medicago truncatula and Medicago sativa (alfalfa) caused by the necrotrophic fungus Ascochyta medicaginicola. This present study sought to identify candidate genes for SBS disease resistance for future functional validation. We employed RNA-seq to profile the transcriptomes of a resistant (HM078) and susceptible (A17) genotype of M. truncatula at 24, 48, and 72 h post inoculation. Preliminary microscopic examination showed reduced pathogen growth on the resistant genotype. In total, 192 and 2,908 differentially expressed genes (DEGs) were observed in the resistant and susceptible genotype, respectively. Functional enrichment analysis revealed the susceptible genotype engaged in processes in the cell periphery and plasma membrane, as well as flavonoid biosynthesis whereas the resistant genotype utilized calcium ion binding, cell wall modifications, and external encapsulating structures. Candidate genes for disease resistance were selected based on the following criteria; among the top ten upregulated or downregulated genes in the resistant genotype, upregulated over time in the resistant genotype, hormone pathway genes, plant disease resistance genes, receptor-like kinases, contrasting expression profiles in QTL for disease resistance, and upregulated genes in enriched pathways. Overall, 22 candidate genes for SBS disease resistance were identified with support from the literature. These genes will be sources for future targeted mutagenesis and candidate gene validation potentially helping to improve disease resistance to this devastating foliar pathogen.
      (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
    • Comments:
      Erratum in: BMC Plant Biol. 2024 Aug 14;24(1):772. doi: 10.1186/s12870-024-05493-8. (PMID: 39138409)
    • References:
      Wang H, Hwang SF, Chang KF, Gossen BD, Turnbull GD, Howard RJ. Assessing resistance to spring black stem and leaf spot of alfalfa caused by Phoma spp. Can J Plant Sci. 2004;84:311–7. (PMID: 10.4141/P03-018)
      Ellwood SR, Kamphuis LG, Oliver RP. Identification of sources of resistance to Phoma Medicaginis isolates in Medicago truncatula SARDI Core Collection accessions, and Multigene differentiation of isolates. Phytopathology. 2006;96:1330–6. (PMID: 1894366510.1094/PHYTO-96-1330)
      Naseri B, Marefat AR. Seasonal dynamics and prevalence of alfalfa fungal pathogens in Zanjan Province, Iran. Int J Plant Prod. 2012;2:327–40.
      Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ. Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot. 2006;98:1117–28. (PMID: 16803846329226810.1093/aob/mcl132)
      Castell-Miller CV, Zeyen RJ, Samac DA. Infection and development of Phoma medicaginis on moderately resistant and susceptible alfalfa genotypes. Can J Plant Pathol. 2007;29:290–8. (PMID: 10.1080/07060660709507472)
      Omidvari M, Flematti GR, You MP, Abbaszadeh-Dahaji P, Barbetti MJ. Phoma Medicaginis isolate differences determine Disease Severity and Phytoestrogen Production in Annual Medicago spp. Plant Dis. 2021;105:2851–60. (PMID: 3385186610.1094/PDIS-03-21-0606-RE)
      Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biol. 2008;8:30. (PMID: 18366746232408510.1186/1471-2229-8-30)
      Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, et al. Phoma Medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. Mol Plant Pathol. 2012;13:593–603. (PMID: 22212347663870310.1111/j.1364-3703.2011.00767.x)
      Li Y, Duan T, Nan Z, Li Y. Arbuscular mycorrhizal fungus alleviates alfalfa leaf spots caused by Phoma medicaginis revealed by RNA-seq analysis. J Appl Microbiol. 2021;130:547–60. (PMID: 3131067010.1111/jam.14387)
      Muthamilarasan M, Prasad M. Plant innate immunity: an updated insight into defense mechanism. J Biosci. 2013;38:433–49. (PMID: 2366067810.1007/s12038-013-9302-2)
      Newman M-A, Sundelin T, Nielsen JT, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci. 2013;4:139. (PMID: 23720666365527310.3389/fpls.2013.00139)
      Kourelis J, van der Hoorn RAL. Defended to the nines: 25 years of Resistance Gene Cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30:285–99. (PMID: 29382771586869310.1105/tpc.17.00579)
      Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9. (PMID: 1710895710.1038/nature05286)
      Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, et al. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. Plant J. 2020;103:903–17. (PMID: 32170798749722510.1111/tpj.14747)
      Lorang JM, Sweat TA, Wolpert TJ. Plant disease susceptibility conferred by a resistance gene. Proc Natl Acad Sci. 2007;104:14861–6. (PMID: 17804803197620210.1073/pnas.0702572104)
      Staal J, Kaliff M, Bohman S, Dixelius C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006;46:218–30. (PMID: 1662388510.1111/j.1365-313X.2006.02688.x)
      Ghozlan MH, EL-Argawy E, Tokgöz S, Lakshman DK, Mitra A. Plant Defense against Necrotrophic Pathogens. Am J Plant Sci. 2020;11:2122–38. (PMID: 10.4236/ajps.2020.1112149)
      Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia Sclerotiorum. Plant J. 2024;117:616–31. (PMID: 3791039610.1111/tpj.16518)
      Martínez-Cruz J, Romero D, Dávila JC, Pérez-García A. The Podosphaera xanthii haustorium, the fungal trojan horse of cucurbit-powdery mildew interactions. Fungal Genet Biol. 2014;71:21–31. (PMID: 2515153110.1016/j.fgb.2014.08.006)
      Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2. (PMID: 10.14806/ej.17.1.200)
      Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. (PMID: 27312411503992410.1093/bioinformatics/btw354)
      Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78. (PMID: 22383036333432110.1038/nprot.2012.016)
      Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. (PMID: 2310488610.1093/bioinformatics/bts635)
      Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. (PMID: 19505943272300210.1093/bioinformatics/btp352)
      Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. (PMID: 2526070010.1093/bioinformatics/btu638)
      Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc. 2013;8:1765–86. (PMID: 2397526010.1038/nprot.2013.099)
      Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. (PMID: 1991030810.1093/bioinformatics/btp616)
      R Core Team. R: A language and environment for statistical computing. 2021.
      Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35 Web Server issue:W193–200.
      Lemoine GG, Scott-Boyer M-P, Ambroise B, Périn O, Droit A. GWENA: gene co-expression networks analysis and extended modules characterization in a single Bioconductor package. BMC Bioinformatics. 2021;22:267. (PMID: 34034647815231310.1186/s12859-021-04179-4)
      Köster P, DeFalco TA, Zipfel C. Ca2 + signals in plant immunity. EMBO J. 2022;41:e110741. (PMID: 35560235919474810.15252/embj.2022110741)
      Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J. 2011;68:100–13. (PMID: 2166853510.1111/j.1365-313X.2011.04671.x)
      Survila M, Davidsson PR, Pennanen V, Kariola T, Broberg M, Sipari N et al. Peroxidase-generated apoplastic ROS impair Cuticle Integrity and contribute to DAMP-Elicited defenses. Front Plant Sci. 2016;7.
      Wang J-E, Liu K-K, Li D-W, Zhang Y-L, Zhao Q, He Y-M, et al. A novel peroxidase CanPOD gene of Pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance. Int J Mol Sci. 2013;14:3158–77. (PMID: 23380961358803710.3390/ijms14023158)
      Ao K, Rohmann PFW, Huang S, Li L, Lipka V, Chen S, et al. Puncta-localized TRAF domain protein TC1b contributes to the autoimmunity of snc1. Plant J. 2023;114:591–612. (PMID: 3679943310.1111/tpj.16155)
      Huang S, Chen X, Zhong X, Li M, Ao K, Huang J, et al. Plant TRAF proteins regulate NLR Immune receptor turnover. Cell Host Microbe. 2016;19:204–15. (PMID: 2686717910.1016/j.chom.2016.01.005)
      Hwang IS, Hwang BK. The Pepper 9-Lipoxygenase gene CaLOX1 functions in defense and cell death responses to Microbial pathogens. Plant Physiol. 2010;152:948–67. (PMID: 19939946281585810.1104/pp.109.147827)
      Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. Specific roles of Lipoxygenases in development and responses to stress in plants. Plants (Basel). 2022;11:979. (PMID: 35406959)
      Raffaele S, Leger A, Roby D. Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signal Behav. 2009;4:94–9. (PMID: 19649180263748910.4161/psb.4.2.7580)
      Tariq F, Zhao S, Ahmad N, Wang P, Shao Q, Ma C, et al. Overexpression of β-Ketoacyl CoA synthase 2B.1 from Chenopodium quinoa promotes suberin monomers’ production and salt tolerance in Arabidopsis thaliana. Int J Mol Sci. 2022;23:13204. (PMID: 36361991965923910.3390/ijms232113204)
      Gish LA, Clark SE. The RLK/Pelle family of kinases. Plant J. 2011;66:117–27. (PMID: 21443627465773710.1111/j.1365-313X.2011.04518.x)
      Quezada E-H, García G-X, Arthikala M-K, Melappa G, Lara M, Nanjareddy K. Cysteine-rich receptor-like kinase Gene Family Identification in the Phaseolus Genome and Comparative Analysis of their expression profiles specific to Mycorrhizal and Rhizobial Symbiosis. Genes (Basel). 2019;10:59. (PMID: 3065851710.3390/genes10010059)
      Ge Y, Cai Y-M, Bonneau L, Rotari V, Danon A, McKenzie EA, et al. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Differ. 2016;23:1493–501. (PMID: 27058316507242610.1038/cdd.2016.34)
      Xie Z, Zhao M, Yan C, Kong W, Lan F, Narengaowa, et al. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis. 2023;14:1–18. (PMID: 10.1038/s41419-023-05786-0)
      Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and outs of cathepsins: physiological function and role in Disease Management. Cells. 2020;9:1679. (PMID: 32668602740794310.3390/cells9071679)
      Wang X, An Y, Xu P, Xiao J. Functioning of PPR Proteins in Organelle RNA metabolism and Chloroplast Biogenesis. Front Plant Sci. 2021;12.
      Geddy R, Brown GG. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics. 2007;8:130. (PMID: 17521445189255710.1186/1471-2164-8-130)
      Park YJ, Lee HJ, Kwak KJ, Lee K, Hong SW, Kang H. MicroRNA400-Guided cleavage of Pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic Bacteria and Fungi. Plant Cell Physiol. 2014;55:1660–8. (PMID: 2500897610.1093/pcp/pcu096)
      Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell. 1994;6:927–33. (PMID: 8069104160489)
      Rose LE, Atwell S, Grant M, Holub EB. Parallel loss-of-function at the RPM1 bacterial resistance locus in Arabidopsis thaliana. Front Plant Sci. 2012;3.
      Wang R, Zhao W, Yao W, Wang Y, Jiang T, Liu H. Genome-wide analysis of Strictosidine synthase-like Gene Family revealed their response to Biotic/Abiotic Stress in Poplar. Int J Mol Sci. 2023;24:10117. (PMID: 373732651029887810.3390/ijms241210117)
      Zou T, Li S, Liu M, Wang T, Xiao Q, Chen D, et al. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep. 2017;7:6863. (PMID: 28761138553733910.1038/s41598-017-07064-4)
      Fedotova AA, Bonchuk AN, Mogila VA, Georgiev PG. C2H2 zinc finger proteins: the Largest but poorly explored family of higher eukaryotic transcription factors. Acta Naturae. 2017;9:47–58. (PMID: 28740726550900010.32607/20758251-2017-9-2-47-58)
      Kiełbowicz-Matuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci. 2012;185–186:78–85. (PMID: 2232586810.1016/j.plantsci.2011.11.015)
      Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L et al. Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci. 2015;6.
      Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol. 2002;3:371–90. (PMID: 2056934410.1046/j.1364-3703.2002.00131.x)
      Botkin JR, Farmer AD, Young ND, Curtin SJ. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance. BMC Genomics. 2024;25:204. (PMID: 383957681088565010.1186/s12864-024-10112-9)
      Ku Y-S, Cheng S-S, Gerhardt A, Cheung M-Y, Contador CA, Poon L-YW, et al. Secretory peptides as bullets: effector peptides from pathogens against antimicrobial peptides from soybean. Int J Mol Sci. 2020;21:9294. (PMID: 33291499773030710.3390/ijms21239294)
      Tang Y, Li Y, Bi Y, Wang Y. Role of Pear Fruit Cuticular Wax and Surface Hydrophobicity in regulating the Prepenetration phase of Alternaria alternata infection. J Phytopathol. 2017;165:313–22. (PMID: 10.1111/jph.12564)
      Geng X, Gao Z, Zhao L, Zhang S, Wu J, Yang Q, et al. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia Cerealis. BMC Plant Biol. 2022;22:235. (PMID: 35534832908793410.1186/s12870-022-03584-y)
      Almeida NF, Krezdorn N, Rotter B, Winter P, Rubiales D, Vaz Patto MC. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front Plant Sci. 2015;6.
      Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, et al. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J. 2019;17:914–31. (PMID: 3032827810.1111/pbi.13026)
      Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK. A global transcriptome and co-expression analysis reveals robust host defense pathway reprogramming and identifies key regulators of early phases of Cicer-Ascochyta interactions. MPMI. 2022;35:1034–47. (PMID: 3593962110.1094/MPMI-06-22-0134-R)
      Huang L-F, Lin K-H, He S-L, Chen J-L, Jiang J-Z, Chen B-H, et al. Multiple patterns of regulation and overexpression of a Ribonuclease-Like Pathogenesis-related protein gene, OsPR10a, conferring Disease Resistance in Rice and Arabidopsis. PLoS ONE. 2016;11:e0156414. (PMID: 27258121489248110.1371/journal.pone.0156414)
      Singh NK, Paz E, Kutsher Y, Reuveni M, Lers A. Tomato T2 ribonuclease LE is involved in the response to pathogens. Mol Plant Pathol. 2020;21:895–906. (PMID: 32352631728003110.1111/mpp.12928)
      Hrmova M, Stratilová B, Stratilová E. Broad specific Xyloglucan:Xyloglucosyl transferases are formidable players in the Re-modelling of Plant Cell Wall structures. Int J Mol Sci. 2022;23:1656. (PMID: 35163576883600810.3390/ijms23031656)
      Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl transferases and the Cell Wall structure: subtle but significant. Molecules. 2020;25:5619. (PMID: 33260399772988510.3390/molecules25235619)
      Fincher GB. Revolutionary Times in our understanding of Cell Wall Biosynthesis and Remodeling in the grasses. Plant Physiol. 2009;149:27–37. (PMID: 19126692261371310.1104/pp.108.130096)
      Hoang TV, Vo KTX, Rahman MM, Zhong R, Lee C, Ketudat Cairns JR, et al. SPOTTED-LEAF7 targets the gene encoding β-galactosidase9, which functions in rice growth and stress responses. Plant Physiol. 2023;193:1109–25. (PMID: 373415421051718710.1093/plphys/kiad359)
      Pan H, Sun Y, Qiao M, Qi H. Beta-galactosidase gene family genome-wide identification and expression analysis of members related to fruit softening in melon (Cucumis melo L). BMC Genomics. 2022;23:795. (PMID: 36460944971674210.1186/s12864-022-09006-5)
      De Tullio MC, Guether M, Balestrini R. Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav. 2013;8:e23213. (PMID: 23299329367649410.4161/psb.23213)
      Singh RR, Nobleza N, Demeestere K, Kyndt T. Ascorbate Oxidase induces systemic resistance in Sugar Beet against Cyst Nematode Heterodera schachtii. Front Plant Sci. 2020;11.
      Chazin WJ. Relating form and function of EF-hand calcium binding proteins. Acc Chem Res. 2011;44:171–9. (PMID: 21314091305938910.1021/ar100110d)
      Sun Q, Yu S, Guo Z. Calmodulin-like (CML) Gene Family in Medicago truncatula: genome-wide identification, characterization and expression analysis. Int J Mol Sci. 2020;21:7142. (PMID: 32992668758267810.3390/ijms21197142)
      Tuteja N, Mahajan S. Calcium Signaling Network in plants. Plant Signal Behav. 2007;2:79–85. (PMID: 19516972263390310.4161/psb.2.2.4176)
      Aldon D, Mbengue M, Mazars C, Galaud J-P. Calcium signalling in plant biotic interactions. Int J Mol Sci. 2018;19:665. (PMID: 29495448587752610.3390/ijms19030665)
      Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 2000;23:441–50. (PMID: 1097287010.1046/j.1365-313x.2000.00804.x)
      Li N, Han X, Feng D, Yuan D, Huang L-J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: do we understand what they are whispering? Int J Mol Sci. 2019;20:671. (PMID: 30720746638743910.3390/ijms20030671)
      León J. Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem. 2013;69:299–313. (PMID: 2382115510.1007/978-94-007-6889-5_16)
      Macioszek VK, Jęcz T, Ciereszko I, Kononowicz AK. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells. 2023;12:1027. (PMID: 370481001009343910.3390/cells12071027)
      Gray J, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana. Commun Integr Biol. 2015;9:e1119343. (PMID: 27829973510065510.1080/19420889.2015.1119343)
      Huang Y, Chen X, Liu Y, Roth C, Copeland C, McFarlane HE, et al. Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nat Commun. 2013;4:2558. (PMID: 2415340510.1038/ncomms3558)
      Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora Parasitica. Plant J. 2000;21:177–88. (PMID: 1074365810.1046/j.1365-313x.2000.00664.x)
      Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell. 2021;33:814–31. (PMID: 33793812822629410.1093/plcell/koaa002)
      Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR gene GbCNL130 confers resistance to Verticillium Wilt Across different species. Front Plant Sci. 2021;12:695691. (PMID: 34567025845610410.3389/fpls.2021.695691)
      Lewis JD, Wu R, Guttman DS, Desveaux D. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet. 2010;6:e1000894. (PMID: 20368970284855810.1371/journal.pgen.1000894)
      Bi G, Su M, Li N, Liang Y, Dang S, Xu J, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184:3528–e354112. (PMID: 3398427810.1016/j.cell.2021.05.003)
    • Contributed Indexing:
      Keywords: Ascochyta medicaginicola; Medicago truncatula; Host response; Necrotrophic fungus; RNA-seq
    • Publication Date:
      Date Created: 20240729 Date Completed: 20240730 Latest Revision: 20240813
    • Publication Date:
      20240814
    • Accession Number:
      PMC11285230
    • Accession Number:
      10.1186/s12870-024-05444-3
    • Accession Number:
      39075348