Spatiotemporal response of the optical characteristics of dissolved organic matter to seasonality and land use in tropical island rivers.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • Subject Terms:
    • Abstract:
      Dissolved organic matter (DOM), a pivotal component in the global carbon cycle, plays a crucial role in maintaining the productivity and functionality of aquatic ecosystems. However, the driving factors of variations in the properties of riverine DOM in tropical islands still remain unclear. In this study, the spatiotemporal response of the optical characteristics of riverine DOM to seasonality and land use on Hainan Island in southern China was investigated. Our results revealed that DOM in the rivers of Hainan Island exhibited a relatively high proportion of fulvic acid and demonstrated strong terrestrial sources. The optical properties of DOM exhibited significant variations both seasonally and spatially. Land use exerted a dominant influence on riverine DOM. Specifically, during the wet season, riverine DOM exhibited larger molecular weight, increased chromophoric DOM (CDOM) abundance, and higher Fmax compared to the dry season. Furthermore, riverine DOM influenced by grassland and farmland showed higher CDOM abundance, Fmax, and humification degree in contrast to those impacted by forest and urban. Random forest and correlation analysis results indicated that grassland and farmland enhanced the Fmax of DOM by increasing levels of TP, NO 3 - -N, Chl a, and NH 4 + -N in the dry season. However, during the wet season, the increased Fmax of DOM induced by grassland and farmland relied on the increments of Chl a and TP concentrations. This study improves our understanding of the spatiotemporal fluctuations of DOM in the rivers of Hainan Island, highlighting the effects of season and land use on DOM. It offers valuable support for improving water quality and contributes to enhancing human comprehension of the global carbon cycle.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Aiken, G. R., Hsu-Kim, H., & Ryan, J. N. (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology, 45(8), 3196–3201. https://doi.org/10.1021/es103992s. (PMID: 10.1021/es103992s)
      Bao, H., Wu, Y., & Zhang, J. (2015). Spatial and temporal variation of dissolved organic matter in the Changjiang: Fluvial transport and flux estimation. Journal of Geophysical Research: Biogeosciences, 120(9), 1870–1886. https://doi.org/10.1002/2015JG002948. (PMID: 10.1002/2015JG002948)
      Battin, T. J. (1998). Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river Venezuela. Organic Geochemistry, 28(9), 561–569. https://doi.org/10.1016/S0146-6380(98)00028-X. (PMID: 10.1016/S0146-6380(98)00028-X)
      Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. (2009). The boundless carbon cycle. Nature Geoscience, 2(9), 598–600. https://doi.org/10.1038/ngeo618. (PMID: 10.1038/ngeo618)
      Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku, E., & Bouillon, S. (2015). Globally significant greenhouse-gas emissions from African Inland waters. Nature Geoscience, 8(8), 637–642. https://doi.org/10.1038/ngeo2486. (PMID: 10.1038/ngeo2486)
      Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199–215. https://doi.org/10.1016/j.rse.2014.04.033. (PMID: 10.1016/j.rse.2014.04.033)
      Casas-Ruiz, J. P., Spencer, R. G. M., Guillemette, F., von Schiller, D., Obrador, B., Podgorski, D. C., Kellerman, A. M., Hartmann, J., Gómez-Gener, L., Sabater, S., & Marcé, R. (2020). Delineating the continuum of dissolved organic matter in temperate river networks. Global Biogeochemical Cycles, 34(8), e2019GB006495. https://doi.org/10.1029/2019GB006495. (PMID: 10.1029/2019GB006495)
      Chen, B., Huang, W., Ma, S., Feng, M., Liu, C., Gu, X., & Chen, K. (2018). Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes Taihu and Hongze during the Algal Bloom Season. Water, 10(7), 861. (PMID: 10.3390/w10070861)
      Clark, C. D., De Bruyn, W. J., & Aiona, P. D. (2016). Temporal variation in optical properties of chromophoric dissolved organic matter (CDOM) in Southern California coastal waters with nearshore kelp and seagrass. Limnology and Oceanography, 61(1), 32–46. https://doi.org/10.1002/lno.10198. (PMID: 10.1002/lno.10198)
      Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346. https://doi.org/10.1016/0304-4203(95)00062-3. (PMID: 10.1016/0304-4203(95)00062-3)
      Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107(2), 402–418. https://doi.org/10.1021/cr050350+. (PMID: 10.1021/cr050350+)
      Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172–185. https://doi.org/10.1007/s10021-006-9013-8. (PMID: 10.1007/s10021-006-9013-8)
      Dainard, P. G., & Guéguen, C. (2013). Distribution of PARAFAC modeled CDOM components in the North Pacific Ocean, Bering, Chukchi and Beaufort Seas. Marine Chemistry, 157, 216–223. https://doi.org/10.1016/j.marchem.2013.10.007. (PMID: 10.1016/j.marchem.2013.10.007)
      Dalmagro, H. J., Johnson, M. S., de Musis, C. R., Lathuillière, M. J., Graesser, J., Pinto-Júnior, O. B., & Couto, E. G. (2017). Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical river-wetland system. Journal of Geophysical Research: Biogeosciences, 122(8), 1883–1902. https://doi.org/10.1002/2017JG003797. (PMID: 10.1002/2017JG003797)
      Deng, L., Peng, C., Zhu, G., Chen, L., Liu, Y., & Shangguan, Z. (2018). Positive responses of belowground C dynamics to nitrogen enrichment in China. Science of the Total Environment, 616–617, 1035–1044. https://doi.org/10.1016/j.scitotenv.2017.10.215. (PMID: 10.1016/j.scitotenv.2017.10.215)
      Drake, T. W., Raymond, P. A., & Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3), 132–142. https://doi.org/10.1002/lol2.10055. (PMID: 10.1002/lol2.10055)
      Elcoroaristizabal, S., Bro, R., García, J. A., & Alonso, L. (2015). PARAFAC models of fluorescence data with scattering: A comparative study. Chemometrics and Intelligent Laboratory Systems, 142, 124–130. https://doi.org/10.1016/j.chemolab.2015.01.017. (PMID: 10.1016/j.chemolab.2015.01.017)
      Fellman, J. B., Miller, M. P., Cory, R. M., D’Amore, D. V., & White, D. (2009). Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy: A comparison of two models. Environmental Science & Technology, 43(16), 6228–6234. https://doi.org/10.1021/es900143g. (PMID: 10.1021/es900143g)
      Feng, H., Liu, M., Xu, M., Zhang, M., Mo, L., Chen, T., Tan, X., & Liu, Z. (2021). Study on the integrated protection strategy of water environment protection: The case of Hainan Province of China. Environmental Technology & Innovation, 24, 101990. https://doi.org/10.1016/j.eti.2021.101990. (PMID: 10.1016/j.eti.2021.101990)
      Fichot, C. G., & Benner, R. (2012). The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnology and Oceanography, 57(5), 1453–1466. https://doi.org/10.4319/lo.2012.57.5.1453. (PMID: 10.4319/lo.2012.57.5.1453)
      Franklin, H. M., Carroll, A. R., Chen, C., Maxwell, P., & Burford, M. A. (2020). Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter. Science of the Total Environment, 703, 134530. https://doi.org/10.1016/j.scitotenv.2019.134530. (PMID: 10.1016/j.scitotenv.2019.134530)
      Gao, Z., & Guéguen, C. (2017). Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin. Deep Sea Research Part I: Oceanographic Research Papers, 121, 30–37. https://doi.org/10.1016/j.dsr.2016.12.014. (PMID: 10.1016/j.dsr.2016.12.014)
      Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., & Liang, L. (2011). Mercury reduction and complexation by natural organic matter in anoxic environments. Proceedings of the National Academy of Sciences, 108(4), 1479–1483. https://doi.org/10.1073/pnas.1008747108. (PMID: 10.1073/pnas.1008747108)
      Guo, W., Yang, L., Hong, H., Stedmon, C. A., Wang, F., Xu, J., & Xie, Y. (2011). Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis. Marine Chemistry, 124(1), 125–133. https://doi.org/10.1016/j.marchem.2011.01.003. (PMID: 10.1016/j.marchem.2011.01.003)
      Hansell, D. A., Carlson, C. A., Repeta, D. J., & Schlitzer, R. (2009). Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography, 22, 202–211. https://doi.org/10.5670/oceanog.2009.109. (PMID: 10.5670/oceanog.2009.109)
      Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B. D., & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 61(3), 1015–1032. https://doi.org/10.1002/lno.10270. (PMID: 10.1002/lno.10270)
      He, J., Li, X. Y., Lin, X., Zhou, F., Tang, R. T., & Xu, F. B. (2021). Spectral feature method was used to identify the components and sources of dissolved organic matter in different polluted landscape channels. Acta Scientiae Circumstantiae, 41(03), 1000–1010. https://doi.org/10.13671/j.hjkxxb.2020.0341. (PMID: 10.13671/j.hjkxxb.2020.0341)
      He, J., Zhu, X.-H., Wei, B., Li, X.-Y., Tang, R.-T., Lin, X., Zhou, F., & Shi, Z.-Z. (2021). Spectral characteristics and sources of dissolved organic matter from landscape river during flood season in Suzhou based on EEMs and UV-vis. Environmental Science, 42(04), 1889–1900. https://doi.org/10.13227/j.hjkx.202009087. (PMID: 10.13227/j.hjkx.202009087)
      Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27(5), 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1. (PMID: 10.1016/S0146-6380(97)00066-1)
      Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3), 955–969. https://doi.org/10.4319/lo.2008.53.3.0955. (PMID: 10.4319/lo.2008.53.3.0955)
      Hong, H., Wu, J., Shang, S., & Hu, C. (2005). Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary South China. Marine Chemistry, 97(1), 78–89. https://doi.org/10.1016/j.marchem.2005.01.008. (PMID: 10.1016/j.marchem.2005.01.008)
      Hong, H., Wu, S., Wang, Q., Qian, L., Lu, H., Liu, J., Lin, H.-J., Zhang, J., Xu, W.-B., & Yan, C. (2021). Trace metal pollution risk assessment in urban mangrove patches: Potential linkage with the spectral characteristics of chromophoric dissolved organic matter. Environmental Pollution, 272, 115996. https://doi.org/10.1016/j.envpol.2020.115996. (PMID: 10.1016/j.envpol.2020.115996)
      Hosen, J. D., McDonough, O. T., Febria, C. M., & Palmer, M. A. (2014). Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environmental Science & Technology, 48(14), 7817–7824. https://doi.org/10.1021/es501422z. (PMID: 10.1021/es501422z)
      Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g. (PMID: 10.1021/es304370g)
      Jian, S., Li, J., Chen, J., Wang, G., Mayes, M. A., Dzantor, K. E., Hui, D., & Luo, Y. (2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 101, 32–43. https://doi.org/10.1016/j.soilbio.2016.07.003. (PMID: 10.1016/j.soilbio.2016.07.003)
      Jiang, T., Skyllberg, U., Wei, S., Wang, D., Lu, S., Jiang, Z., & Flanagan, D. C. (2015). Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement. Geochimica Et Cosmochimica Acta, 154, 151–167. https://doi.org/10.1016/j.gca.2015.01.011. (PMID: 10.1016/j.gca.2015.01.011)
      Jiang, T., Wang, D., Wei, S., Yan, J., Liang, J., Chen, X., Liu, J., Wang, Q., Lu, S., Gao, J., Li, L., Guo, N., & Zhao, Z. (2018). Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the three Gorges Reservoir area, China. Science of the Total Environment, 636, 249–259. https://doi.org/10.1016/j.scitotenv.2018.04.262. (PMID: 10.1016/j.scitotenv.2018.04.262)
      Jonsson, S., Andersson, A., Nilsson, M. B., Skyllberg, U., Lundberg, E., Schaefer, J. K., Åkerblom, S., & Björn, E. (2017). Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 3(1), e1601239. https://doi.org/10.1126/sciadv.1601239. (PMID: 10.1126/sciadv.1601239)
      Kijowska-Strugała, M., & Bochenek, W. (2023). Land use changes impact on selected chemical denudation element and components of water cycle in small mountain catchment using SWAT model. Geomorphology, 435, 108747. https://doi.org/10.1016/j.geomorph.2023.108747. (PMID: 10.1016/j.geomorph.2023.108747)
      Kikuchi, T., Anzai, T., & Ouchi, T. (2023). Assessing spatiotemporal variability in the concentration and composition of dissolved organic matter and its impact on iron solubility in tropical freshwater systems through a machine learning approach. Science of the Total Environment, 904, 166892. https://doi.org/10.1016/j.scitotenv.2023.166892. (PMID: 10.1016/j.scitotenv.2023.166892)
      Kim, J., Song, B.-C., & Kim, T.-H. (2022). Origin of dissolved organic carbon under phosphorus-limited coastal-bay conditions revealed by fluorescent dissolved organic matter. Frontiers in Marine Science, 9, 971550. https://doi.org/10.3389/fmars.2022.971550. (PMID: 10.3389/fmars.2022.971550)
      Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., & Tranvik, L. J. (2013). Inner filter correction of dissolved organic matter fluorescence. Limnology and Oceanography: Methods, 11(12), 616–630. https://doi.org/10.4319/lom.2013.11.616. (PMID: 10.4319/lom.2013.11.616)
      Kurek, M. R., Stubbins, A., Drake, T. W., Dittmar, T., Moura, J. M. S., Holmes, R. M., Osterholz, H., Six, J., Wabakanghanzi, J. N., Dinga, B., Mitsuya, M., & Spencer, R. G. M. (2022). Organic molecular signatures of the Congo River and comparison to the Amazon. Global Biogeochemical Cycles, 36(6), e2022GB007301. https://doi.org/10.1029/2022GB007301. (PMID: 10.1029/2022GB007301)
      Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., & Borges, A. V. (2016). Along-stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences, 13(9), 2727–2741. https://doi.org/10.5194/bg-13-2727-2016. (PMID: 10.5194/bg-13-2727-2016)
      Lange, M., Roth, V.-N., Eisenhauer, N., Roscher, C., Dittmar, T., Fischer-Bedtke, C., González Macé, O., Hildebrandt, A., Milcu, A., Mommer, L., Oram, N. J., Ravenek, J., Scheu, S., Schmid, B., Strecker, T., Wagg, C., Weigelt, A., & Gleixner, G. (2021). Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. Journal of Ecology, 109(3), 1284–1297. https://doi.org/10.1111/1365-2745.13556. (PMID: 10.1111/1365-2745.13556)
      Lapworth, D. J., Nkhuwa, D. C. W., Okotto-Okotto, J., Pedley, S., Stuart, M. E., Tijani, M. N., & Wright, J. (2017). Urban groundwater quality in sub-Saharan Africa: Current status and implications for water security and public health. Hydrogeology Journal, 25(4), 1093–1116. https://doi.org/10.1007/s10040-016-1516-6. (PMID: 10.1007/s10040-016-1516-6)
      Larsen, S., Andersen, T., & Hessen, D. O. (2011). Climate change predicted to cause severe increase of organic carbon in lakes. Global Change Biology, 17(2), 1186–1192. https://doi.org/10.1111/j.1365-2486.2010.02257.x. (PMID: 10.1111/j.1365-2486.2010.02257.x)
      Lei, X., Pan, J., & Devlin, A. T. (2018). Mixing behavior of chromophoric dissolved organic matter in the Pearl River Estuary in spring. Continental Shelf Research, 154, 46–54. https://doi.org/10.1016/j.csr.2018.01.004. (PMID: 10.1016/j.csr.2018.01.004)
      Li, D., Pan, B., Han, X., Li, J., Zhu, Q., & Li, M. (2021). Assessing the potential to use CDOM as an indicator of water quality for the sediment-laden Yellow river China. Environmental Pollution, 289, 117970. https://doi.org/10.1016/j.envpol.2021.117970. (PMID: 10.1016/j.envpol.2021.117970)
      Li, J., Liang, E., Deng, C., Li, B., Cai, H., Ma, R., Xu, Q., Liu, J., & Wang, T. (2024). Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. Water Research, 253, 121318. https://doi.org/10.1016/j.watres.2024.121318. (PMID: 10.1016/j.watres.2024.121318)
      Li, S., Li, M., Wang, G., Sun, X., Xi, B., & Hu, Z. (2019). Compositional and chemical characteristics of dissolved organic matter in various types of cropped and natural Chinese soils. Chemical and Biological Technologies in Agriculture, 6(1), 20. https://doi.org/10.1186/s40538-019-0158-z. (PMID: 10.1186/s40538-019-0158-z)
      Li, S.-L., Zhang, H., Yi, Y., Zhang, Y., Qi, Y., Mostofa, K. M. G., Guo, L., He, D., Fu, P., & Liu, C.-Q. (2023). Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers. Geography and Sustainability, 4(4), 329–339. https://doi.org/10.1016/j.geosus.2023.07.003. (PMID: 10.1016/j.geosus.2023.07.003)
      Li, T., Hong, X., Liu, S., Wu, X., Fu, S., Liang, Y., Li, J., Li, R., Zhang, C., Song, X., Zhao, H., Wang, D., Zhao, F., Ruan, Y., & Ju, X. (2022). Cropland degradation and nutrient overload on Hainan Island: A review and synthesis. Environmental Pollution, 313, 120100. https://doi.org/10.1016/j.envpol.2022.120100. (PMID: 10.1016/j.envpol.2022.120100)
      Liao, Z., Wang, Y., Xie, K., Xie, N., Cai, X., Zhou, L., & Yuan, Y. (2022). Photochemistry of dissolved organic matter in water from the Pearl river (China): Seasonal patterns and predictive modelling. Water Research, 208, 117875. https://doi.org/10.1016/j.watres.2021.117875. (PMID: 10.1016/j.watres.2021.117875)
      Liu, C., Du, Y., Yin, H., Fan, C., Chen, K., Zhong, J., & Gu, X. (2019a). Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environmental Pollution, 246, 207–216. https://doi.org/10.1016/j.envpol.2018.11.092. (PMID: 10.1016/j.envpol.2018.11.092)
      Liu, C., Li, Z., Berhe, A. A., Xiao, H., Liu, L., Wang, D., Peng, H., & Zeng, G. (2019b). Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV–Visible absorption: Insights from source identification and carbon cycling. Geoderma, 334, 37–48. https://doi.org/10.1016/j.geoderma.2018.07.029. (PMID: 10.1016/j.geoderma.2018.07.029)
      Liu, D., Pan, D., Bai, Y., He, X., Wang, D., & Zhang, L. (2015). Variation of dissolved organic carbon transported by two Chinese rivers: The Changjiang River and Yellow River. Marine Pollution Bulletin, 100(1), 60–69. https://doi.org/10.1016/j.marpolbul.2015.09.029. (PMID: 10.1016/j.marpolbul.2015.09.029)
      Liu, L., Zheng, J., Guan, J., Han, W., & Liu, Y. (2023). Grassland cover dynamics and their relationship with climatic factors in China from 1982 to 2021. Science of the Total Environment, 905, 167067. https://doi.org/10.1016/j.scitotenv.2023.167067. (PMID: 10.1016/j.scitotenv.2023.167067)
      Lyu, L., Liu, G., Shang, Y., Wen, Z., Hou, J., & Song, K. (2021). Characterization of dissolved organic matter (DOM) in an urbanized watershed using spectroscopic analysis. Chemosphere, 277, 130210. https://doi.org/10.1016/j.chemosphere.2021.130210. (PMID: 10.1016/j.chemosphere.2021.130210)
      Ma, Y., & Li, S. (2020). Spatial and temporal comparisons of dissolved organic matter in river systems of the three gorges reservoir region using fluorescence and UV–visible spectroscopy. Environmental Research, 189, 109925. https://doi.org/10.1016/j.envres.2020.109925. (PMID: 10.1016/j.envres.2020.109925)
      Ma, Y., Ni, M., Gu, S., Zhang, L., & Li, S. (2023). Autochthonous sources and biogeochemical processes drive the spatiotemporal variation of DOM composition and optical indicators in a karst river. Journal of Hydrology, 623, 129825. https://doi.org/10.1016/j.jhydrol.2023.129825. (PMID: 10.1016/j.jhydrol.2023.129825)
      Massicotte, P., Asmala, E., Stedmon, C., & Markager, S. (2017). Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Science of the Total Environment, 609, 180–191. https://doi.org/10.1016/j.scitotenv.2017.07.076. (PMID: 10.1016/j.scitotenv.2017.07.076)
      McIntyre, A. M., & Guéguen, C. (2013). Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere, 90(2), 620–626. https://doi.org/10.1016/j.chemosphere.2012.08.057. (PMID: 10.1016/j.chemosphere.2012.08.057)
      Moody, C. S., & Worrall, F. (2017). Modeling rates of DOC degradation using DOM composition and hydroclimatic variables. Journal of Geophysical Research: Biogeosciences, 122(5), 1175–1191. https://doi.org/10.1002/2016JG003493. (PMID: 10.1002/2016JG003493)
      Moore, T. R., Paré, D., & Boutin, R. (2008). Production of dissolved organic carbon in canadian forest soils. Ecosystems, 11(5), 740–751. https://doi.org/10.1007/s10021-008-9156-x. (PMID: 10.1007/s10021-008-9156-x)
      Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., & Aiken, G. R. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environmental Science & Technology, 44(24), 9405–9412. https://doi.org/10.1021/es102362t. (PMID: 10.1021/es102362t)
      Murphy, K., Stedmon, C., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5, 6557–6566. https://doi.org/10.1039/c3ay41160e. (PMID: 10.1039/c3ay41160e)
      Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1), 40–58. https://doi.org/10.1016/j.marchem.2007.10.003. (PMID: 10.1016/j.marchem.2007.10.003)
      Murphy, K. R., Stedmon, C. A., Wenig, P., & Bro, R. (2014). OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Analytical Methods, 6, 658–661. https://doi.org/10.1039/C3AY41935E. (PMID: 10.1039/C3AY41935E)
      Neff, J. C., & Asner, G. P. (2001). Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems, 4(1), 29–48. https://doi.org/10.1007/s100210000058. (PMID: 10.1007/s100210000058)
      Ni, M., Jiang, S., & Li, S. (2020). Spectroscopic indices trace spatiotemporal variability of dissolved organic matter in a river system with Karst characteristic. Journal of Hydrology, 590, 125570. https://doi.org/10.1016/j.jhydrol.2020.125570. (PMID: 10.1016/j.jhydrol.2020.125570)
      Ohno, T. (2002). Fluorescence inner-filtering correction for determining the Humification index of dissolved organic matter. Environmental Science & Technology, 36(4), 742–746. https://doi.org/10.1021/es0155276. (PMID: 10.1021/es0155276)
      Park, J. H., Nayna, O. K., Begum, M. S., Chea, E., Hartmann, J., Keil, R. G., Kumar, S., Lu, X., Ran, L., Richey, J. E., Sarma, V. V. S. S., Tareq, S. M., Xuan, D. T., & Yu, R. (2018). Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges. Biogeosciences, 15(9), 3049–3069. https://doi.org/10.5194/bg-15-3049-2018. (PMID: 10.5194/bg-15-3049-2018)
      Patriarca, C., Sedano-Núñez, V. T., Garcia, S. L., Bergquist, J., Bertilsson, S., Sjöberg, P. J. R., Tranvik, L. J., & Hawkes, J. A. (2021). Character and environmental lability of cyanobacteria-derived dissolved organic matter. Limnology and Oceanography, 66(2), 496–509. https://doi.org/10.1002/lno.11619. (PMID: 10.1002/lno.11619)
      Pifer, A. D., Miskin, D. R., Cousins, S. L., & Fairey, J. L. (2011). Coupling asymmetric flow-field flow fractionation and fluorescence parallel factor analysis reveals stratification of dissolved organic matter in a drinking water reservoir. Journal of Chromatography A, 1218(27), 4167–4178. https://doi.org/10.1016/j.chroma.2010.12.039. (PMID: 10.1016/j.chroma.2010.12.039)
      Pradhan, U., Wu, Y., Xiaona, W., Zhang, J., & Zhang, G. (2016). Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea. Journal of Hydrology, 534, 553–566. https://doi.org/10.1016/j.jhydrol.2016.01.046. (PMID: 10.1016/j.jhydrol.2016.01.046)
      Praise, S., Ito, H., Sakuraba, T., Pham, D. V., & Watanabe, T. (2020). Water extractable organic matter and iron in relation to land use and seasonal changes. Science of the Total Environment, 707, 136070. https://doi.org/10.1016/j.scitotenv.2019.136070. (PMID: 10.1016/j.scitotenv.2019.136070)
      Ren, W., Wu, X., Ge, X., Lin, G., Zhou, M., Long, Z., Yu, X., & Tian, W. (2021a). Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province China. Journal of Oceanology and Limnology, 39(4), 1256–1276. https://doi.org/10.1007/s00343-020-0102-x. (PMID: 10.1007/s00343-020-0102-x)
      Ren, Z., Zhang, H., Wang, Y., Lu, L., Ren, D., & Wang, J. (2021b). Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation. Journal of Hazardous Materials, 401, 123434. https://doi.org/10.1016/j.jhazmat.2020.123434. (PMID: 10.1016/j.jhazmat.2020.123434)
      Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M., & Marrasé, C. (2011). Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology, 77, 7490–7498. https://doi.org/10.1128/aem.00200-11. (PMID: 10.1128/aem.00200-11)
      Schafer, T., Powers, L., Gonsior, M., Reddy, K. R., & Osborne, T. Z. (2021). Contrasting responses of DOM leachates to photodegradation observed in plant species collected along an estuarine salinity gradient. Biogeochemistry, 152(2), 291–307. https://doi.org/10.1007/s10533-021-00756-0. (PMID: 10.1007/s10533-021-00756-0)
      Shafiquzzaman, M., Haider, H., Bhuiyan, M. A., Ahmed, A. T., AlSaleem, S. S., & Ghumman, A. R. (2020). Spatiotemporal variations of DOM components in the Kushiro River impacted by a wetland. Environmental Science and Pollution Research, 27(15), 18287–18302. https://doi.org/10.1007/s11356-020-08192-7. (PMID: 10.1007/s11356-020-08192-7)
      Shi, Y., Zhang, L., Li, Y., Zhou, L., Zhou, Y., Zhang, Y., Huang, C., Li, H., & Zhu, G. (2020). Influence of land use and rainfall on the optical properties of dissolved organic matter in a key drinking water reservoir in China. Science of the Total Environment, 699, 134301. https://doi.org/10.1016/j.scitotenv.2019.134301. (PMID: 10.1016/j.scitotenv.2019.134301)
      Shimotori, K., Watanabe, K., & Hama, T. (2012). Fluorescence characteristics of humic-like fluorescent dissolved organic matter produced by various taxa of marine bacteria. Aquatic Microbial Ecology, 65(3), 249–260. https://doi.org/10.3354/ame01552. (PMID: 10.3354/ame01552)
      Singh, S., D’Sa, E. J., & Swenson, E. M. (2010). Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). Science of the Total Environment, 408(16), 3211–3222. https://doi.org/10.1016/j.scitotenv.2010.03.044. (PMID: 10.1016/j.scitotenv.2010.03.044)
      Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., Larsen, S., Lennon, J. T., Read, J. S., Sadro, S., & Saros, J. E. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to Lakes: Current knowledge and future challenges. Ecosystems, 18(3), 376–389. https://doi.org/10.1007/s10021-015-9848-y. (PMID: 10.1007/s10021-015-9848-y)
      Song, K. S., Zang, S. Y., Zhao, Y., Li, L., Du, J., Zhang, N. N., Wang, X. D., Shao, T. T., Guan, Y., & Liu, L. (2013). Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region China. Hydrology and Earth System Sciences, 17(10), 4269–4281. https://doi.org/10.5194/hess-17-4269-2013. (PMID: 10.5194/hess-17-4269-2013)
      Spencer, R. G. M., Butler, K. D., & Aiken, G. R. (2012). Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2011JG001928. (PMID: 10.1029/2011JG001928)
      Spencer, R. G. M., Hernes, P. J., Ruf, R., Baker, A., Dyda, R. Y., Stubbins, A., & Six, J. (2010). Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2009JG001180. (PMID: 10.1029/2009JG001180)
      Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572–579. https://doi.org/10.4319/lom.2008.6.572. (PMID: 10.4319/lom.2008.6.572)
      Stedmon, C. A., & Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2), 686–697. https://doi.org/10.4319/lo.2005.50.2.0686. (PMID: 10.4319/lo.2005.50.2.0686)
      Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3), 239–254. https://doi.org/10.1016/S0304-4203(03)00072-0. (PMID: 10.1016/S0304-4203(03)00072-0)
      Stedmon, C. A., Markager, S., & Kaas, H. (2000). Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science, 51(2), 267–278. https://doi.org/10.1006/ecss.2000.0645. (PMID: 10.1006/ecss.2000.0645)
      Stedmon, C. A., Markager, S., Tranvik, L., Kronberg, L., Slätis, T., & Martinsen, W. (2007). Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry, 104(3), 227–240. https://doi.org/10.1016/j.marchem.2006.11.005. (PMID: 10.1016/j.marchem.2006.11.005)
      Syvitski, J. P. M., Cohen, S., Kettner, A. J., & Brakenridge, G. R. (2014). How important and different are tropical rivers? —An overview. Geomorphology, 227, 5–17. https://doi.org/10.1016/j.geomorph.2014.02.029. (PMID: 10.1016/j.geomorph.2014.02.029)
      Tang, J., Wang, W., Yang, L., Qiu, Q., Lin, M., Cao, C., & Li, X. (2020). Seasonal variation and ecological risk assessment of dissolved organic matter in a peri-urban critical zone observatory watershed. Science of the Total Environment, 707, 136093. https://doi.org/10.1016/j.scitotenv.2019.136093. (PMID: 10.1016/j.scitotenv.2019.136093)
      Thompson, L. M., Kuhn, M. A., Winder, J. C., Braga, L. P. P., Hutchins, R. H. S., Tanentzap, A. J., St Louis, V. L., & Olefeldt, D. (2023). Controls on methylmercury concentrations in lakes and streams of peatland-rich catchments along a 1700 km permafrost gradient. Limnology and Oceanography, 68(3), 583–597. https://doi.org/10.1002/lno.12296. (PMID: 10.1002/lno.12296)
      Tipping, E., Carter, H., Koprivnjak, J.-F., Lapworth, D., Miller, M., Vincent, C., & Hamilton-Taylor, J. (2009). Quantification of natural DOM from UV absorption at two wavelengths. Environmental Chemistry, 6, 472–476. https://doi.org/10.1071/EN09090. (PMID: 10.1071/EN09090)
      Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2), 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298. (PMID: 10.4319/lo.2009.54.6_part_2.2298)
      Vaughn, D. R., Kellerman, A. M., Wickland, K. P., Striegl, R. G., Podgorski, D. C., Hawkings, J. R., Nienhuis, J. H., Dornblaser, M. M., Stets, E. G., & Spencer, R. G. M. (2023). Anthropogenic landcover impacts fluvial dissolved organic matter composition in the upper Mississippi River Basin. Biogeochemistry, 164(1), 117–141. https://doi.org/10.1007/s10533-021-00852-1. (PMID: 10.1007/s10533-021-00852-1)
      Wang, K., Pang, Y., He, C., Li, P., Xiao, S., Sun, Y., Pan, Q., Zhang, Y., Shi, Q., & He, D. (2019a). Optical and molecular signatures of dissolved organic matter in Xiangxi Bay and mainstream of three gorges reservoir, China: Spatial variations and environmental implications. Science of the Total Environment, 657, 1274–1284. https://doi.org/10.1016/j.scitotenv.2018.12.117. (PMID: 10.1016/j.scitotenv.2018.12.117)
      Wang, L., Wu, F., Zhang, R., Li, W., & Liao, H. (2009). Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau. Journal of Environmental Sciences, 21(5), 581–588. https://doi.org/10.1016/S1001-0742(08)62311-6. (PMID: 10.1016/S1001-0742(08)62311-6)
      Wang, X., Wu, Y., Bao, H., Gan, S., & Zhang, J. (2019b). Sources, transport, and transformation of dissolved organic matter in a large river system: Illustrated by the Changjiang River China. Journal of Geophysical Research: Biogeosciences, 124(12), 3881–3901. https://doi.org/10.1029/2018JG004986. (PMID: 10.1029/2018JG004986)
      Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708. https://doi.org/10.1021/es030360x. (PMID: 10.1021/es030360x)
      Wilson, H. F., & Xenopoulos, M. A. (2009). Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience, 2(1), 37–41. https://doi.org/10.1038/ngeo391. (PMID: 10.1038/ngeo391)
      Wu, D., Liu, J., Li, Q., & Wu, C. (2015). Spectral Characteristics of Dissolved Organic Matters from Three Different Kinds of Sources in Torrid Zone. Humic Acid, 5, 11–18+28. https://doi.org/10.19451/j.cnki.issn1671-9212.2015.05.004. (PMID: 10.19451/j.cnki.issn1671-9212.2015.05.004)
      Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373. https://doi.org/10.1002/wat2.1373. (PMID: 10.1002/wat2.1373)
      Xiao, R., Wang, G., Zhang, Q., & Zhang, Z. (2016). Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Scientific Reports, 6(1), 25250. https://doi.org/10.1038/srep25250. (PMID: 10.1038/srep25250)
      Xu, P., Zhu, J., Wang, H., Shi, L., Zhuang, Y., Fu, Q., Chen, J., Hu, H., & Huang, Q. (2021). Regulation of soil aggregate size under different fertilizations on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Science of the Total Environment, 755, 142595. https://doi.org/10.1016/j.scitotenv.2020.142595. (PMID: 10.1016/j.scitotenv.2020.142595)
      Yamashita, Y., Cory, R. M., Nishioka, J., Kuma, K., Tanoue, E., & Jaffé, R. (2010a). Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 57(16), 1478–1485. https://doi.org/10.1016/j.dsr2.2010.02.016. (PMID: 10.1016/j.dsr2.2010.02.016)
      Yamashita, Y., Maie, N., Briceño, H., & Jaffé, R. (2010). Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield Venezuela. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2009JG000987. (PMID: 10.1029/2009JG000987)
      Yamashita, Y., Scinto, L. J., Maie, N., & Jaffé, R. (2010c). Dissolved organic matter characteristics across a subtropical Wetland’s landscape: Application of optical properties in the assessment of environmental dynamics. Ecosystems, 13(7), 1006–1019. https://doi.org/10.1007/s10021-010-9370-1. (PMID: 10.1007/s10021-010-9370-1)
      Yan, L., Xie, X., Peng, K., Wang, N., Zhang, Y., Deng, Y., Gan, Y., Li, Q., & Zhang, Y. (2021). Sources and compositional characterization of chromophoric dissolved organic matter in a Hainan tropical mangrove-estuary. Journal of Hydrology, 600, 126572. https://doi.org/10.1016/j.jhydrol.2021.126572. (PMID: 10.1016/j.jhydrol.2021.126572)
      Yang, Q., Xu, G., Yang, X., Li, A., & Chen, C. (2020). Responses of water quality to land use & landscape pattern in the Qingyijiang river watershed. Acta Ecologica Sinica, 40(24), 9048–9058.
      Yang, S., Dong, G., Zheng, D., Xiao, H., Gao, Y., & Lang, Y. (2011). Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan China. Ecological Modelling, 222(20), 3701–3717. https://doi.org/10.1016/j.ecolmodel.2011.09.004. (PMID: 10.1016/j.ecolmodel.2011.09.004)
      Yang, X., Yu, X., Cheng, J., Zheng, R., Wang, K., Dai, Y., Tong, N., & Chow, A. T. (2018). Impacts of land-use on surface waters at the watershed scale in southeastern China: Insight from fluorescence excitation-emission matrix and PARAFAC. Science of the Total Environment, 627, 647–657. https://doi.org/10.1016/j.scitotenv.2018.01.279. (PMID: 10.1016/j.scitotenv.2018.01.279)
      Yang, Y., Chen, X., Liu, L., Li, T., Dou, Y., Qiao, J., Wang, Y., An, S., & Chang, S. X. (2022). Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Global Change Biology, 28(21), 6446–6461. https://doi.org/10.1111/gcb.16361. (PMID: 10.1111/gcb.16361)
      Zhang, H., Cui, K., Guo, Z., Li, X., Chen, J., Qi, Z., & Xu, S. (2020a). Spatiotemporal variations of spectral characteristics of dissolved organic matter in river flowing into a key drinking water source in China. Science of the Total Environment, 700, 134360. https://doi.org/10.1016/j.scitotenv.2019.134360. (PMID: 10.1016/j.scitotenv.2019.134360)
      Zhang, L., & Li, S. (2024). Anthropogenic dissolved organic matter accumulation fuels greenhouse gas diffusive emissions in urban lakes along trophic state levels. Process Safety and Environmental Protection, 186, 474–485. https://doi.org/10.1016/j.psep.2024.04.026. (PMID: 10.1016/j.psep.2024.04.026)
      Zhang, L., Liu, R., Zheng, D., Zheng, C., & Zhang, J. (2023). Direct and indirect effects of land use on dissolved organic matter in a typical Karst river. Environmental Science, 44(10), 5511–5523. https://doi.org/10.13227/j.hjkx.202209126. (PMID: 10.13227/j.hjkx.202209126)
      Zhang, Y., van Dijk, M. A., Liu, M., Zhu, G., & Qin, B. (2009). The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Research, 43(18), 4685–4697. https://doi.org/10.1016/j.watres.2009.07.024. (PMID: 10.1016/j.watres.2009.07.024)
      Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., & Zhang, Y. (2011a). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Research, 45(16), 5110–5122. https://doi.org/10.1016/j.watres.2011.07.014. (PMID: 10.1016/j.watres.2011.07.014)
      Zhang, Y., Yin, Y., Liu, X., Shi, Z., Feng, L., Liu, M., Zhu, G., Gong, Z., & Qin, B. (2011b). Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Organic Geochemistry, 42(5), 510–519. https://doi.org/10.1016/j.orggeochem.2011.03.007. (PMID: 10.1016/j.orggeochem.2011.03.007)
      Zhang, Z.-J., Wang, X.-Z., Liang, L.-Y., Huang, E., & Tao, X.-H. (2020b). Phosphorus fertilization alters complexity of paddy soil dissolved organic matter. Journal of Integrative Agriculture, 19(9), 2301–2312. https://doi.org/10.1016/S2095-3119(20)63215-4. (PMID: 10.1016/S2095-3119(20)63215-4)
      Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers China. Environmental Earth Sciences, 74(6), 5097–5110. https://doi.org/10.1007/s12665-015-4522-4. (PMID: 10.1007/s12665-015-4522-4)
      Zhao, L., Gao, L., & Guo, L. (2021). Seasonal variations in molecular size of chromophoric dissolved organic matter from the lower Changjiang (Yangtze) River. Journal of Geophysical Research: Biogeosciences, 126(8), e2020JG006160. https://doi.org/10.1029/2020JG006160. (PMID: 10.1029/2020JG006160)
      Zhao, Y. (2024). New insight into and characterization of DOC, DON and CDOM for urban waters in the lower reaches of the Yellow River China. Science of the Total Environment, 914, 169828. https://doi.org/10.1016/j.scitotenv.2023.169828. (PMID: 10.1016/j.scitotenv.2023.169828)
      Zhao, Y., Song, K., Wen, Z., Fang, C., Shang, Y., & Lv, L. (2017). Evaluation of CDOM sources and their links with water quality in the lakes of northeast China using fluorescence spectroscopy. Journal of Hydrology, 550, 80–91. https://doi.org/10.1016/j.jhydrol.2017.04.027. (PMID: 10.1016/j.jhydrol.2017.04.027)
      Zheng, D., Liu, R., Zhang, L., Zheng, C., & Zhang, J. (2023). Effects of land use on multi-temporal scales of dissolved organic matter in three gorges reservoir. Journal of Lake Sciences, 35(04), 1343–1360. (PMID: 10.18307/2023.0426)
      Zhou, X., Johnston, S. E., & Bogard, M. J. (2023). Organic matter cycling in a model restored wetland receiving complex effluent. Biogeochemistry, 162(2), 237–255. https://doi.org/10.1007/s10533-022-01002-x. (PMID: 10.1007/s10533-022-01002-x)
      Zhou, Y., Yao, X., Zhang, Y., Zhang, Y., Shi, K., Tang, X., Qin, B., Podgorski, D. C., Brookes, J. D., & Jeppesen, E. (2018). Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels. Science of the Total Environment, 639, 876–887. https://doi.org/10.1016/j.scitotenv.2018.05.180. (PMID: 10.1016/j.scitotenv.2018.05.180)
      Zhou, Z., Guo, L., & Minor, E. C. (2016). Characterization of bulk and chromophoric dissolved organic matter in the Laurentian Great Lakes during summer 2013. Journal of Great Lakes Research, 42(4), 789–801. https://doi.org/10.1016/j.jglr.2016.04.006. (PMID: 10.1016/j.jglr.2016.04.006)
    • Grant Information:
      322QN363 Hainan Provincial Natural Science Foundation of China; No.32171771, 31870616 National Natural Science Foundation of China; No. 1630042023002 Central Public-interest Scientific Institution Basal Research Fund for Innovative Research Team Program of CATAS
    • Contributed Indexing:
      Keywords: Dissolved organic matter (DOM); Land use; Optical properties; Seasonal variation; Spatiotemporal variations; Tropical Island rivers
    • Accession Number:
      0 (Humic Substances)
      0 (Organic Chemicals)
      0 (Benzopyrans)
      XII14C5FXV (fulvic acid)
    • Publication Date:
      Date Created: 20240729 Date Completed: 20240729 Latest Revision: 20240906
    • Publication Date:
      20240906
    • Accession Number:
      10.1007/s10653-024-02131-y
    • Accession Number:
      39073511