Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY : Nature Pub. Group, [2005]-
    • Subject Terms:
    • Abstract:
      Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
      Competing Interests: Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
    • References:
      Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013). (PMID: 23500459366563510.1016/j.plipres.2013.02.002)
      Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008). (PMID: 18216768264295810.1038/nrm2330)
      Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018). (PMID: 2941052910.1038/nrm.2017.138)
      Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2014). (PMID: 2524385010.1111/tra.12230)
      Carman, G. M. & Henry, S. A. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38, 361–399 (1999). (PMID: 1079388910.1016/S0163-7827(99)00010-7)
      Vance, J. E. & Vance, D. E. Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 82, 113–128 (2004). (PMID: 1505233210.1139/o03-073)
      Henry, S. A., Kohlwein, S. D. & Carman, G. M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349 (2012). (PMID: 22345606327662110.1534/genetics.111.130286)
      Lykidis, A. Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog. Lipid Res. 46, 171–199 (2007). (PMID: 1751205610.1016/j.plipres.2007.03.003)
      Gibellini, F. & Smith, T. K. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428 (2010). (PMID: 2050343410.1002/iub.337)
      Dowhan, W., Bogdanov, M. & Eugene, P. Kennedy’s legacy: defining bacterial phospholipid pathways and function. Front. Mol. Biosci. 8, 666203 (2021). (PMID: 33842554802712510.3389/fmolb.2021.666203)
      Kennedy, E. P. & Weiss, S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214 (1956). (PMID: 1336699310.1016/S0021-9258(19)50785-2)
      Henneberry, A. L., Wistow, G. & McMaster, C. R. Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J. Biol. Chem. 275, 29808–29815 (2000). (PMID: 1089342510.1074/jbc.M005786200)
      Dowhan, W., Wickner, W. T. & Kennedy, E. P. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. J. Biol. Chem. 249, 3079–3084 (1974). (PMID: 459812010.1016/S0021-9258(19)42640-9)
      Calzada, E., Onguka, O. & Claypool, S. M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29–88 (2016). (PMID: 2681128610.1016/bs.ircmb.2015.10.001)
      Acoba, M. G., Senoo, N. & Claypool, S. M. Phospholipid ebb and flow makes mitochondria go. J. Cell Biol. 219, e202003131 (2020). (PMID: 32614384740180210.1083/jcb.202003131)
      Vance, D. E. & Ridgway, N. D. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79 (1988). (PMID: 305751110.1016/0163-7827(88)90005-7)
      Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193 (2017). (PMID: 28366644548241210.1016/j.molcel.2017.02.026)
      Cornell, R. B. & Ridgway, N. D. CTP:phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog. Lipid Res. 59, 147–171 (2015). (PMID: 2616579710.1016/j.plipres.2015.07.001)
      Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015). (PMID: 25628363434449810.1093/nar/gkv047)
      Vetter, I. R. & Wittinghofer, A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q. Rev. Biophys. 32, 1–56 (1999). (PMID: 1080052010.1017/S0033583599003480)
      Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. & Siniossoglou, S. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941 (2005). (PMID: 15889145114260610.1038/sj.emboj.7600672)
      Han, G.-S., Wu, W.-I. & Carman, G. M. The Saccharomyces cerevisiae lipin homolog is a Mg 2+ -dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210–9218 (2006). (PMID: 1646729610.1074/jbc.M600425200)
      Rashid, T. et al. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. EMBO J. 38, e99576 (2019). (PMID: 3042055810.15252/embj.201899576)
      Pascual, F., Soto-Cardalda, A. & Carman, G. M. PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 288, 35781–35792 (2013). (PMID: 24196957386162910.1074/jbc.M113.525766)
      Park, Y., Han, G.-S., Mileykovskaya, E., Garrett, T. A. & Carman, G. M. Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290, 25382–25394 (2015). (PMID: 26338708464618710.1074/jbc.M115.680314)
      Jamil, H., Utal, A. K. & Vance, D. E. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J. Biol. Chem. 267, 1752–1760 (1992). (PMID: 130979510.1016/S0021-9258(18)46010-3)
      Bahmanyar, S. et al. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121–126 (2014). (PMID: 24449268390978610.1101/gad.230599.113)
      Fang, W., Zhu, Y., Yang, S., Tong, X. & Ye, C. Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation. Cell Rep. 39, 110672 (2022). (PMID: 3541771810.1016/j.celrep.2022.110672)
      McMaster, C. R. & Bell, R. M. CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase. Biochim. Biophys. Acta 1348, 117–123 (1997). (PMID: 937032310.1016/S0005-2760(97)00098-2)
      Boumann, H. A., de Kruijff, B., Heck, A. J. & de Kroon, A. I. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast. FEBS Lett. 569, 173–177 (2004). (PMID: 1522562910.1016/j.febslet.2004.05.043)
      Horibata, Y. & Hirabayashi, Y. Identification and characterization of human ethanolaminephosphotransferase1. J. Lipid Res. 48, 503–508 (2007). (PMID: 1713286510.1194/jlr.C600019-JLR200)
      Janmey, P. A. & Kinnunen, P. K. J. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 16, 538–546 (2006). (PMID: 1696277810.1016/j.tcb.2006.08.009)
      Bloom, M., Evans, E. & Mouritsen, O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biophys. 24, 293–397 (1991). (PMID: 174982410.1017/S0033583500003735)
      Renne, M. F. & de Kroon, A. I. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 592, 1330–1345 (2017). (PMID: 29265372594783710.1002/1873-3468.12944)
      Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018). (PMID: 29727671603411510.1016/j.cell.2018.03.055)
      Toroser, D., Yarian, C. S., Orr, W. C. & Sohal, R. S. Mechanisms of γ-glutamylcysteine ligase regulation. Biochim. Biophys. Acta 1760, 233–244 (2006). (PMID: 1632478910.1016/j.bbagen.2005.10.010)
      Olin-Sandoval, V. et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572, 249–253 (2019). (PMID: 31367038677479810.1038/s41586-019-1442-6)
      Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2017). (PMID: 29272116583152410.1021/acs.chemrev.7b00510)
      Nakanishi, T. & Sekimizu, K. SDT1/SSM1, a multicopy suppressor of S-II null mutant, encodes a novel pyrimidine 5′-nucleotidase. J. Biol. Chem. 277, 22103–22106 (2002). (PMID: 1193489110.1074/jbc.M200573200)
      Xu, Y.-F. et al. Nucleotide degradation and ribose salvage in yeast. Mol. Syst. Biol. 9, 665 (2013). (PMID: 23670538403936910.1038/msb.2013.21)
      Ljungdahl, P. O. & Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190, 885–929 (2012). (PMID: 22419079329625410.1534/genetics.111.133306)
      Ho, B., Baryshnikova, A. & Brown, G. W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205 (2018). (PMID: 2936146510.1016/j.cels.2017.12.004)
      Haider, A. et al. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev. Cell 45, 481–495 (2018). (PMID: 29754800597120310.1016/j.devcel.2018.04.012)
      Kuehne, A. et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59, 359–371 (2015). (PMID: 2619026210.1016/j.molcel.2015.06.017)
      Reest, J., van der Lilla, S., Zheng, L., Zanivan, S. & Gottlieb, E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun. 9, 1581 (2018). (PMID: 29679077591038010.1038/s41467-018-04003-3)
      Shenton, D. & Grant, C. M. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem. J. 374, 513–519 (2003). (PMID: 12755685122359610.1042/bj20030414)
      Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2014). (PMID: 2524398510.1111/brv.12140)
      Harman, D. Free radical theory of aging: an update: increasing the functional life span. Ann. N. Y. Acad. Sci. 1067, 10–21 (2006). (PMID: 1680396510.1196/annals.1354.003)
      Park, P. U., McVey, M. & Guarente, L. Separation of mother and daughter cells. Methods Enzymol. 351, 468–477 (2002). (PMID: 1207336410.1016/S0076-6879(02)51865-6)
      Saretzki, G. & Von Zglinicki, T. Replicative aging, telomeres, and oxidative stress. Ann. N. Y. Acad. Sci. 959, 24–29 (2002). (PMID: 1197618210.1111/j.1749-6632.2002.tb02079.x)
      Gaspar, M. L., Aregullin, M. A., Jesch, S. A. & Henry, S. A. Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. J. Biol. Chem. 281, 22773–22785 (2006). (PMID: 1677785410.1074/jbc.M603548200)
      McMaster, C. R. & Bell, R. M. Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. Regulatory insights from studies employing null and chimeric sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases. J. Biol. Chem. 269, 28010–28016 (1994). (PMID: 796173510.1016/S0021-9258(18)46888-3)
      Wang, Y., MacDonald, J. I. S. & Kent, C. Identification of the nuclear localization signal of rat liver CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 270, 354–360 (1995). (PMID: 781439610.1074/jbc.270.1.354)
      Carman, G. M. & Han, G.-S. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 80, 859–883 (2011). (PMID: 21275641356522010.1146/annurev-biochem-060409-092229)
      Loewen, C. J. R. et al. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644–1647 (2004). (PMID: 1519222110.1126/science.1096083)
      Carman, G. M. & Henry, S. A. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 282, 37293–37297 (2007). (PMID: 1798180010.1074/jbc.R700038200)
      Carman, G. M. & Han, G.-S. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330 (2007). (PMID: 1680708910.1016/j.bbalip.2006.05.006)
      Michel, V., Yuan, Z., Ramsubir, S. & Bakovic, M. Choline transport for phospholipid synthesis. Exp. Biol. Med. 231, 490–504 (2006). (PMID: 10.1177/153537020623100503)
      Kenny, T. C. et al. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab. 35, 1057–1071 (2023). (PMID: 371000561036758210.1016/j.cmet.2023.04.003)
      McDonough, V. M. et al. Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by CTP. J. Biol. Chem. 270, 18774–18780 (1995). (PMID: 764252710.1074/jbc.270.32.18774)
      Ostrander, D. B., O’Brien, D. J., Gorman, J. A. & Carman, G. M. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 273, 18992–19001 (1998). (PMID: 966807910.1074/jbc.273.30.18992)
      Kent, C. & Carman, G. M. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem. Sci. 24, 146–150 (1999). (PMID: 1032242010.1016/S0968-0004(99)01365-1)
      Tehlivets, O. Homocysteine as a risk factor for atherosclerosis: is its conversion to S-adenosyl-L-homocysteine the key to deregulated lipid metabolism?. J. Lipids 2011, 702853 (2011). (PMID: 21837278315150510.1155/2011/702853)
      Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD + recycling. Cell Metab. 29, 856–870 (2019). (PMID: 30686744644744710.1016/j.cmet.2018.12.023)
      Liu, S. et al. Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD + to alleviate mitochondrial disease. Cell Metab. 33, 1974–1987 (2021). (PMID: 3427092910.1016/j.cmet.2021.06.013)
      Van Dijken, J. P. et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706–714 (2000). (PMID: 10.1016/S0141-0229(00)00162-9)
      Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998). (PMID: 971724110.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U)
      Yang, S., Xue, J. & Ye, C. Protocol for rapid and accurate quantification of phospholipids in yeast and mammalian systems using LC–MS. STAR Protoc. 3, 101769 (2022). (PMID: 36240059957971110.1016/j.xpro.2022.101769)
      Tu, B. P. et al. Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl Acad. Sci. USA 104, 16886–16891 (2007). (PMID: 17940006204044510.1073/pnas.0708365104)
      Ye, C. et al. Demethylation of the protein phosphatase PP2A promotes demethylation of histones to enable their function as a methyl group sink. Mol. Cell 73, 1115–1126 (2019). (PMID: 30772176662892110.1016/j.molcel.2019.01.012)
      Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019). (PMID: 30683937738236910.1038/s41596-018-0102-x)
      Fang, W. et al. Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat. Commun. 14, 2504 (2023). (PMID: 371308561015441110.1038/s41467-023-38289-9)
      Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018). (PMID: 29849146647511610.1038/s41586-018-0174-3)
      Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011). (PMID: 2163719510.1038/nprot.2011.319)
    • Accession Number:
      0 (Phospholipids)
      0 (Nucleotides)
      53-59-8 (NADP)
      65-47-4 (Cytidine Triphosphate)
      0 (Saccharomyces cerevisiae Proteins)
      0 (Antioxidants)
      GAN16C9B8O (Glutathione)
    • Publication Date:
      Date Created: 20240726 Date Completed: 20241223 Latest Revision: 20241224
    • Publication Date:
      20241225
    • Accession Number:
      10.1038/s41589-024-01689-z
    • Accession Number:
      39060393