Revealing the key antioxidant compounds and potential action mechanisms of Chinese Cabernet Sauvignon red wines by integrating UHPLC-QTOF-MS-based untargeted metabolomics, network pharmacology and molecular docking approaches.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Applied Science Publishers Country of Publication: England NLM ID: 7702639 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-7072 (Electronic) Linking ISSN: 03088146 NLM ISO Abbreviation: Food Chem Subsets: MEDLINE
    • Publication Information:
      Publication: Barking : Elsevier Applied Science Publishers
      Original Publication: Barking, Eng., Applied Science Publishers.
    • Subject Terms:
    • Abstract:
      In recent years, red wine drinking has become more popular in China owing to its antioxidant effects. However, the key antioxidant compounds and their action mechanisms of Chinese red wines are still unclear. Herein, the antioxidant activities and chemical compositions of 45 Chinese Cabernet Sauvignon red wine samples were determined using chemical antioxidant assays and an UHPLC-QTOF-MS-based untargeted metabolomics method. The key antioxidant compounds in red wines and potential action mechanisms were revealed by integrating network pharmacology and molecular docking approaches. Results showed that there are 8 key antioxidant compounds in the red wine samples. These compounds are involved in several metabolic pathways in the body, particularly PI3K/AKT. What's more, they bind to the core antioxidant targets through hydrogen bonding and hydrophobic interaction. Among them, myricetin, laricitrin, 2,3,8-tri-O-methylellagic acid and AKT1 have the highest binding energies. This study could provide the theoretical basis for further investigation of physiological activities and functions of Chinese red wines.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 Elsevier Ltd. All rights reserved.)
    • Contributed Indexing:
      Keywords: Action mechanism; Antioxidant activity; Chinese red wine; Molecular docking; Network pharmacology; Untargeted metabolomics
    • Accession Number:
      0 (Antioxidants)
    • Publication Date:
      Date Created: 20240725 Date Completed: 20240904 Latest Revision: 20240924
    • Publication Date:
      20240924
    • Accession Number:
      10.1016/j.foodchem.2024.140540
    • Accession Number:
      39053274