Everything, altogether, all at once: Addressing data challenges when measuring speech intelligibility through entropy scores.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Espejo JMR;Espejo JMR; De Maeyer S; De Maeyer S; Gillis S; Gillis S
  • Source:
    Behavior research methods [Behav Res Methods] 2024 Oct; Vol. 56 (7), pp. 8132-8154. Date of Electronic Publication: 2024 Jul 24.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101244316 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1554-3528 (Electronic) Linking ISSN: 1554351X NLM ISO Abbreviation: Behav Res Methods Subsets: MEDLINE
    • Publication Information:
      Publication: 2010- : New York : Springer
      Original Publication: Austin, Tex. : Psychonomic Society, c2005-
    • Subject Terms:
    • Abstract:
      When investigating unobservable, complex traits, data collection and aggregation processes can introduce distinctive features to the data such as boundedness, measurement error, clustering, outliers, and heteroscedasticity. Failure to collectively address these features can result in statistical challenges that prevent the investigation of hypotheses regarding these traits. This study aimed to demonstrate the efficacy of the Bayesian beta-proportion generalized linear latent and mixed model (beta-proportion GLLAMM) (Rabe-Hesketh et al., Psychometrika, 69(2), 167-90, 2004a, Journal of Econometrics, 128(2), 301-23, 2004c, 2004b; Skrondal and Rabe-Hesketh 2004) in handling data features when exploring research hypotheses concerning speech intelligibility. To achieve this objective, the study reexamined data from transcriptions of spontaneous speech samples initially collected by Boonen et al. (Journal of Child Language, 50(1), 78-103, 2023). The data were aggregated into entropy scores. The research compared the prediction accuracy of the beta-proportion GLLAMM with the normal linear mixed model (LMM) (Holmes et al., 2019) and investigated its capacity to estimate a latent intelligibility from entropy scores. The study also illustrated how hypotheses concerning the impact of speaker-related factors on intelligibility can be explored with the proposed model. The beta-proportion GLLAMM was not free of challenges; its implementation required formulating assumptions about the data-generating process and knowledge of probabilistic programming languages, both central to Bayesian methods. Nevertheless, results indicated the superiority of the model in predicting empirical phenomena over the normal LMM, and its ability to quantify a latent potential intelligibility. Additionally, the proposed model facilitated the exploration of hypotheses concerning speaker-related factors and intelligibility. Ultimately, this research has implications for researchers and data analysts interested in quantitatively measuring intricate, unobservable constructs while accurately predicting the empirical phenomena.
      (© 2024. The Author(s).)
    • References:
      Baker, F. (1998). An Investigation of the Item Parameter Recovery Characteristics of a Gibbs Sampling Procedure. Applied Psychological Measurement, 22(22), 153–169. https://doi.org/10.1177/01466216980222005. (PMID: 10.1177/01466216980222005)
      Baldwin, S., & Fellingham, G. (2013). Bayesian Methods for the Analysis of Small Sample Multilevel Data with a Complex Variance Structure. Journal of Psychological Methods, 18(2), 151–164. https://doi.org/10.1037/a0030642. (PMID: 10.1037/a003064223148476)
      Bayes, C., Bazán, J., & García, C. (2012). A New Robust Regression Model for Proportions. Bayesian Analysis, 7(4), 841–866. https://doi.org/10.1214/12-ba728. (PMID: 10.1214/12-ba728)
      Boonen, N., Kloots, H., & Gillis, S. (2020). Rating the Overall Speech Quality of Hearing-Impaired Children by Means of Comparative Judgements. Journal of Communication Disorders, 83, 1675–1687. https://doi.org/10.1016/j.jcomdis.2019.105969. (PMID: 10.1016/j.jcomdis.2019.105969)
      Boonen, N., Kloots, H., Nurzia, P., & Gillis, S. (2023). Spontaneous Speech Intelligibility: Early Cochlear Implanted Children Versus Their Normally Hearing Peers at Seven Years of Age. Journal of Child Language, 50(1), 78–103. https://doi.org/10.1017/S0305000921000714. (PMID: 10.1017/S030500092100071436503545)
      Boons, T., Brokx, J., Dhooge, I., Frijns, J., Peeraer, L., Vermeulen, A., ... van Wieringen, A. (2012). Predictors of Spoken Language Development Following Pediatric Cochlear Implantation. Ear and Hearing, 33(5), 617–639. https://doi.org/10.1097/AUD.0b013e3182503e47.
      Carrasco, J., Ferrari, S.,  & Arellano-Valle., R. (2012). “Errors-in-Variables Beta Regression Models.” https://arxiv.org/abs/1212.0870 .
      Castellanos, I., Kronenberger, W., Beer, J., Henning, S., Colson, B., & Pisoni, D. (2014). Preschool Speech Intelligibility and Vocabulary Skills Predict Long-Term Speech and Language Outcomes Following Cochlear Implantation in Early Childhood. Cochlear Implants International, 15(4), 200–210. https://doi.org/10.1179/1754762813Y.0000000043. (PMID: 10.1179/1754762813Y.000000004323998347)
      Chin, S., Bergeson, T., & Phan, J. (2012). Speech Intelligibility and Prosody Production in Children with Cochlear Implants. Journal of Communication Disorders, 45, 355–366. https://doi.org/10.1016/j.jcomdis.2012.05.003. (PMID: 10.1016/j.jcomdis.2012.05.003227171203412899)
      Chin, S., & Kuhns, M. (2014). Proximate Factors Associated with Speech Intelligibility in Children with Cochlear Implants: A Preliminary Study. Clinical Linguistics & Phonetics, 28(7–8), 532–542. https://doi.org/10.3109/02699206.2014.926997. (PMID: 10.3109/02699206.2014.926997)
      Choi, I. H. (2023). The Impact of Measurement Noninvariance Across Time and Group in Longitudinal Item Response Modeling. Asia Pacific Education Review. https://doi.org/10.1007/s12564-023-09907-4. (PMID: 10.1007/s12564-023-09907-49972304)
      Cinelli, C., Forney, A., & Pearl, J., (2022). A Crash Course in Good and Bad Controls. SSRN, September. https://doi.org/10.2139/ssrn.3689437.
      Cox, R., McDaniel, D., Kent, J., & Rosenbek, J. (1989). Development of the Speech Intelligibility Rating (SIR) Test for Hearing Aid Comparisons. Journal of Speech, Language, and Hearing Research, 32(2), 347–352. https://doi.org/10.1044/jshr.3202.347. (PMID: 10.1044/jshr.3202.347)
      Cronbach, L., & Meehl, P. (1955). Construct Validity in Psychological Tests. Psychological Bulletin, 52(4), 281–302. https://doi.org/10.1037/h0040957. (PMID: 10.1037/h004095713245896)
      de Brito Trindade, D., Espinheira, P. L., Pinto Vasconcellos, K. L., Carrasco, J. M. F., & de Lima, M. do C. S. (2021). Beta Regression Model Nonlinear in the Parameters with Additive Measurement Errors in Variables. PLOS ONE 16 (7): 1–28. https://doi.org/10.1371/journal.pone.0254103.
      Deffner, D., Rohrer, J.,  & McElreath, R. (2022). “A Causal Framework for Cross-Cultural Generalizability.” Advances in Methods and Practices in Psychological Science 5 (3). https://doi.org/10.1177/25152459221106366 .
      Depaoli, S. (2014). The Impact of Inaccurate ‘Informative’ Priors for Growth Parameters in Bayesian Growth Mixture Modeling. Journal of Structural Equation Modeling, 21, 239–252. https://doi.org/10.1080/10705511.2014.882686. (PMID: 10.1080/10705511.2014.882686)
      Depaoli, S. (2021). Bayesian Structural Equation Modeling. Methodology in the Social Sciences. The Guilford Press.
      Depaoli, S., & van de Schoot, R. (2017). Improving Transparency and Replication in Bayesian Statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240–261. https://doi.org/10.1037/met0000065. (PMID: 10.1037/met000006526690773)
      Dieteren, C., Bonfrer, I., Brouwer, W., & van Exel, J. (2023). Public Preferences for Policies Promoting a Healthy Diet: A Discrete Choice Experiment. European Journal of Health Economics, 24, 1429–1440. https://doi.org/10.1007/s10198-022-01554-7. (PMID: 10.1007/s10198-022-01554-7)
      Ertmer, D. (2011). Assessing Speech Intelligibility in Children with Hearing Loss: Toward Revitalizing a Valuable Clinical Tool. Language, Speech, and Hearing Services in Schools, 42(1), 52–58. https://doi.org/10.1044/0161-1461(2010/09-0081). (PMID: 10.1044/0161-1461(2010/09-0081)20601533)
      Everitt, B., & Skrondal, A. (2010). The Cambridge Dictionary of Statistics. Cambridge University Press. (PMID: 10.1017/CBO9780511779633)
      Faes, J., De Maeyer, S., & Gillis, S. (2022). Speech Intelligibility of Children with an Auditory Brainstem Implant: A Triple-Case Study. Clinical Linguistics & Phonetics, 36(12), 1–50. https://doi.org/10.1080/02699206.2021.1988148. (PMID: 10.1080/02699206.2021.1988148)
      Fagan, M., Eisenberg, L., & Johnson, K. (2020). “Investigating Early Pre-Implant Predictors of Language and Cognitive Development in Children with Cochlear Implants.” In Oxford Handbook of Deaf Studies in Learning and Cognition, edited by M. Marschark and H. Knoors, 46–95. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190054045.013.3 .
      Ferrari, S., & Cribari-Neto, F. (2004). Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7), 799–815. https://doi.org/10.1080/0266476042000214501. (PMID: 10.1080/0266476042000214501)
      Figueroa-Zúñiga, J., Arellano-Valle, R., & Ferrari, S. (2013). Mixed Beta Regression. Computational Statistics & Data Analysis, 61, 137–147. https://doi.org/10.1016/j.csda.2012.12.002. (PMID: 10.1016/j.csda.2012.12.002)
      Figueroa-Zúñiga, J., Bayes, C., Leiva, V., & Liu, S. (2021). Robust Beta Regression Modeling with Errors-in-Variables: A Bayesian Approach and Numerical Applications. Statistical Papers. https://doi.org/10.1007/s00362-021-01260-1.
      Figueroa-Zúñiga, J., Carrasco, J., Arellano-Valle, R., & Ferrari, S. (2018). A Bayesian Approach to Errors-in-Variables Beta Regression. Brazilian Journal of Probability and Statistics, 32(3), 559–582. https://doi.org/10.1214/17-bjps354. (PMID: 10.1214/17-bjps354)
      Flipsen, P. (2006). Measuring the Intelligibility of Conversational Speech in Children. Clinical Linguistics & Phonetics, 20(4), 303–312. https://doi.org/10.1080/02699200400024863. (PMID: 10.1080/02699200400024863)
      Freeman, V., Pisoni, D., Kronenberger, W., & Castellanos, I. (2017). Speech Intelligibility and Psychosocial Functioning in Deaf Children and Teens with Cochlear Implants. Journal of Deaf Studies and Deaf Education, 22(3), 278–289. https://doi.org/10.1093/deafed/enx001. (PMID: 10.1093/deafed/enx001285864336074820)
      Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. 2014. Bayesian Data Analysis. 3rd ed. Texts in Statistical Science. Chapman; Hall/CRC.
      Ghosh, A. (2019). Robust Inference Under the Beta Regression Model with Application to Health Care Studies. Journal of Statistical Methods in Medical Research, 28(3), 871–888. https://doi.org/10.1177/0962280217738142. (PMID: 10.1177/096228021773814229179655)
      Gillis, S. 2018. “Speech and Language in Congenitally Deaf Children with a Cochlear Implant.” In Handbook of Communication Disorders: Theoretical, Empirical, and Applied Linguistic Perspectives, edited by ElitzurHG Dattner and Dorit Ravid, 765–92. De Gruyter Mouton. https://doi.org/10.1515/9781614514909-038.
      Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657. (PMID: 10.1080/00401706.1969.10490657)
      Holmes, W., J. Bolin, and K. Kelley. 2019. Multilevel Modeling Using r (2nd Edition). Chapman; Hall/CRC. https://doi.org/10.1201/9781351062268.
      Jeffreys, H. (1998). Theory of Probability. Oxford University Press. (PMID: 10.1093/oso/9780198503682.001.0001)
      Jenkins, S. (2000). Cultural and Linguistic Miscues: A Case Study of International Teaching Assistant and Academic Faculty Miscommunication. International Journal of Intercultural Relations, 24(4), 477–501. https://doi.org/10.1016/S0147-1767(00)00011-0. (PMID: 10.1016/S0147-1767(00)00011-0)
      Kangmennaang, J., Siiba, A. and Bisung, E. (2023). Does Trust Mediate the Relationship Between Experiences of Discrimination and Health Care Access and Utilization Among Minoritized Canadians During COVID-19 Pandemic? Journal of Racial and Ethnic Health Disparities. https://doi.org/10.1007/s40615-023-01809-w.
      Kent, R., Miolo, G., & Bloedel, S. (1994). The Intelligibility of Children’s Speech: A Review of Evaluation Procedures. American Journal of Speech-Language Pathology, 3(2), 81–95. https://doi.org/10.1044/1058-0360.0302.81. (PMID: 10.1044/1058-0360.0302.81)
      Kent, R., Weismer, G., Kent, J., & Rosenbek, J. (1989). Toward Phonetic Intelligibility Testing in Dysarthria. Journal of Speech and Hearing Disorders, 54(4), 482–499. https://doi.org/10.1044/jshd.5404.482. (PMID: 10.1044/jshd.5404.4822811329)
      Khwaileh, F., & Flipsen, P. (2010). Single Word and Sentence Intelligibility in Children with Cochlear Implants. Clinical Linguistics & Phonetics, 24(9), 722–733. https://doi.org/10.3109/02699206.2010.490003. (PMID: 10.3109/02699206.2010.490003)
      Kim, S., and A. Cohen. (1999). Accuracy of Parameter Estimation in Gibbs Sampling Under the Two-Parameter Logistic Model. https://eric.ed.gov/?id=ED430012.
      Kruschke, D. (2015). Doing Bayesian Data Analysis: A Tutorial with r, JAGS, and Stan. Elsevier. https://www.sciencedirect.com/book/9780124058880/ng-bayesian-data-analysis.
      Kullback, S., and R. Leibler. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics 22 (1): 79–86. http://www.jstor.org/stable/2236703.
      Lagerberg, T., Asberg, J., Hartelius, L., & Persson, C. (2014). Assessment of Intelligibility Using Children’s Spontaneous Speech: Methodological Aspects. International Journal of Language and Communication Disorders, 49(2), 228–239. https://doi.org/10.1111/1460-6984.12067. (PMID: 10.1111/1460-6984.1206724304870)
      Lambert, P., Sutton, A., Burton, P., Abrams, K., & Jones, D. (2006). How Vague Is Vague? A Simulation Study of the Impact of the Use of Vague Prior Distributions in MCMC Using WinBUGS. Journal of Statistics in Medicine, 24(15), 2401–2428. https://doi.org/10.1002/sim.2112. (PMID: 10.1002/sim.2112)
      Lebl, J. 2022. Basic Analysis i & II: Introduction to Real Analysis, Volumes i & II. https://www.jirka.org/ra/html/frontmatter-1.html.
      Lesterhuis, M. (2018). The Validity of Comparative Judgement for Assessing Text Quality: An Assessor’s Perspective. PhD thesis, University of Antwerp.
      Lopes, S., Shi, L., Pan, X., Gu, Y., Dengler-Crish, C., Yan Li, Y., ... Zhang, D. (2023). Meditation and Cognitive Outcomes: A Longitudinal Analysis Using Data from the Health and Retirement Study 2000–2016. Mindfulness, 14, 1705–1717. https://doi.org/10.1007/s12671-023-02165-w.
      MacWhinney, B. (2020). The CHILDES Project: Tools for Analyzing Talk. Lawrence Erlbaum Associates. https://doi.org/10.21415/3mhn-0z89.
      Martin, J., & McDonald, R. (1975). Bayesian Estimation in Unrestricted Factor Analysis: A Treatment for Heywood Cases. Psychometrika, 40, 505–517. https://doi.org/10.1007/BF02291552. (PMID: 10.1007/BF02291552)
      Mayer, M. (1969). Frog, Where Are You? Boy, a Dog, and a Frog. Dial Books for Young Readers. https://books.google.be/books?id=Asi5KQAACAAJ.
      McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in r and STAN. Chapman; Hall/CRC.
      Montag, J., AuBuchon, A., Pisoni, D., & Kronenberger, W. (2014). Speech Intelligibility in Deaf Children After Long-Term Cochlear Implant Use. Journal of Speech, Language, and Hearing Research, 57(6), 2332–2343. https://doi.org/10.1044/2014_JSLHR-H-14-0190. (PMID: 10.1044/2014_JSLHR-H-14-019025260109)
      Munro, M. (1998). The Effects of Noise on the Intelligibility of Foreign-Accented Speech. Studies in Second Language Acquisition, 20(2), 139–154. https://doi.org/10.1017/S0272263198002022. (PMID: 10.1017/S0272263198002022)
      Munro, M., & Derwing, T. (1998). The Effects of Speaking Rate on Listener Evaluations of Native and Foreign-Accented Speech. Language Learning, 48(2), 159–182. https://doi.org/10.1111/1467-9922.00038. (PMID: 10.1111/1467-9922.00038)
      Muthén, B. (2001). Second-Generation Structural Equation Modeling with a Combination of Categorical and Continuous Latent Variables: New Opportunities for Latent Class–Latent Growth Modeling. In New Methods for the Analysis of Change, edited by L. Collins and A. Sayer, 291–322. American Psychological Association. https://doi.org/10.1037/10409-010 .
      Niparko, J., Tobey, E., Thal, D., Eisenberg, L., Wang, N., Quittner, A., & Fink, N. (2010). Spoken Language Development in Children Following Cochlear Implantation. JAMA, 303(15), 1498–1506. https://doi.org/10.1001/jama.2010.451. (PMID: 10.1001/jama.2010.451204070593073449)
      Ockey, G., S. Papageorgiou, and R. French. 2016. “Effects of Strength of Accent on an L2 Interactive Lecture Listening Comprehension Test.” International Journal of Listening 30 (1–2): 84–98. 0.1080/10904018.2015.1056877.
      Pereira, J., Nobre, W., Silva, I., & Schmidt, A. (2020). Spatial Confounding in Hurdle Multilevel Beta Models: The Case of the Brazilian Mathematical Olympics for Public Schools. Journal of the Royal Statistical Society Series a: Statistics in Society, 183(3), 1051–1073. https://doi.org/10.1111/rssa.12551. (PMID: 10.1111/rssa.12551)
      Pollitt, A. (2012a). Comparative Judgement for Assessment. International Journal of Technology and Design Education, 22(2), 157–170. https://doi.org/10.1007/s10798-011-9189-x. (PMID: 10.1007/s10798-011-9189-x)
      Pollitt, A. (2012b). The Method of Adaptive Comparative Judgement. Assessment in Education: Principles, Policy and Practice, 19(3), 281–300. https://doi.org/10.1080/0969594X.2012.665354. (PMID: 10.1080/0969594X.2012.665354)
      Pritikin, J. (2020). An Exploratory Factor Model for Ordinal Paired Comparison Indicators. Heliyon 6 6 (9). https://doi.org/10.1016/j.heliyon.2020.e04821.
      R Core Team. (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
      Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004a). Generalized Multilevel Structural Equation Modeling. Psychometrika 69 (2): 167–90. https://doi.org/10.1007/BF02295939.
      Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004b). GLLAMM Manual. UC Berkeley Division of Biostatistics. http://www.biostat.jhsph.edu/~fdominic/teaching/bio656/software-gllamm.manual.pdf.
      Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004c). Maximum Likelihood Estimation of Limited and Discrete Dependent Variable Models with Nested Random Effects. Journal of Econometrics 128 (2): 301–23. https://doi.org/10.1016/j.jeconom.2004.08.017.
      Seaman, J., III., Seaman, J., Jr., & Stamey, J. (2011). Hidden Dangers of Specifying Noninformative Priors. The American Statistician, 66(2), 77–84. https://doi.org/10.1080/00031305.2012.695938. (PMID: 10.1080/00031305.2012.695938)
      Shannon, C. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. (PMID: 10.1002/j.1538-7305.1948.tb01338.x)
      Shmueli, G., & Koppius, O. (2011). Predictive Analytics in Information Systems Research. MIS Quarterly, 35(3), 553–572. https://doi.org/10.2307/23042796. (PMID: 10.2307/23042796)
      Simas, A. B., Barreto-Souza, W., & Rocha, A. V. (2010). Improved Estimators for a General Class of Beta Regression Models. Computational Statistics & Data Analysis, 54(2), 348–366. https://doi.org/10.1016/j.csda.2009.08.017. (PMID: 10.1016/j.csda.2009.08.017)
      Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC Press. (PMID: 10.1201/9780203489437)
      Spiegelhalter, D., Best, N., Carlin, B., & van der Linde, A. (2002). Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society Series b: Statistical Methodology, 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353. (PMID: 10.1111/1467-9868.00353)
      Stan Development Team. (2021). Stan Modeling Language Users Guide and Reference Manual, Version 2.26. Vienna, Austria. https://mc-stan.org.
      Tackney, M., Morris, T., White, I., Leyrat, C., Diaz-Ordaz, K., and Williamson, E. (2023). A Comparison of Covariate Adjustment Approaches Under Model Misspecification in Individually Randomized Trials. Trials 24 (14). https://doi.org/10.1186/s13063-022-06967-6.
      Thurstone, L. (1927). A Law of Comparative Judgment. Psychological Review, 34(4), 482–499. https://doi.org/10.1037/h0070288. (PMID: 10.1037/h0070288)
      Unlu, H., and Aktas, S. (2017). Beta Regression for the Indicator Values of Well-Being Index for Provinces in Turkey. Journal of Engineering Technology and Applied Sciences 2 (2): 101–11. https://doi.org/10.30931/jetas.321165.
      van Daal, T. (2020). Making a Choice Is Not Easy?!: Unravelling the Task Difficulty of Comparative Judgement to Assess Student Work. PhD thesis, University of Antwerp.
      van Heuven, V. (2008). Making Sense of Strange Sounds: (Mutual) Intelligibility of Related Language Varieties. A Review. International Journal of Humanities and Arts Computing, 2(1–2), 39–62. https://doi.org/10.3366/E1753854809000305. (PMID: 10.3366/E1753854809000305)
      Varonis, E., & Susan, G. (1985). Non-Native/Non-Native Conversations: A Model for Negotiation of Meaning. Applied Linguistics, 6(1), 71–90. https://doi.org/10.1093/applin/6.1.71. (PMID: 10.1093/applin/6.1.71)
      Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4. (PMID: 10.1007/s11222-016-9696-4)
      Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021). Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC (with Discussion). Bayesian Analysis, 16(2), 667–718. https://doi.org/10.1214/20-BA1221. (PMID: 10.1214/20-BA1221)
      Verhavert, S., Bouwer, R., Donche, V., & De Maeyer, S. (2019). A Meta-Analysis on the Reliability of Comparative Judgement. Assessment in Education: Principles, Policy and Practice, 26(5), 541–562. https://doi.org/10.1080/0969594X.2019.1602027. (PMID: 10.1080/0969594X.2019.1602027)
      Verkuilen, J., & Smithson, M. (2013). Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution. Journal of Educational and Behavioral Statistics, 37(1), 82–113. https://doi.org/10.3102/1076998610396895. (PMID: 10.3102/1076998610396895)
      Watanabe, S. (2013). A Widely Applicable Bayesian Information Criterion. Journal of Machine Learning Research 14: 867–97. https://www.jmlr.org/papers/volume14/watanabe13a/watanabe13a.pdf .
      Whitehill, T., & Chau, C. (2004). Single-Word Intelligibility in Speakers with Repaired Cleft Palate. Clinical Linguistics and Phonetics, 18, 341–355. https://doi.org/10.1080/02699200410001663344. (PMID: 10.1080/0269920041000166334415259575)
      Zhang, J., Du, W., and Huang, F. (2023). Longitudinal Study of Dietary Patterns and Hypertension in Adults: China Health and Nutrition Survey 1991–2018. Hypertension Research 46: 2264–71. https://doi.org/10.1038/s41440-023-01322-x.
    • Contributed Indexing:
      Keywords: Bayesian analysis; Bounded outcomes; Clustering; Generalized linear latent and mixed models; Heteroscedasticity; Measurement error; Outliers; Robust regression models; Speech intelligibility
    • Publication Date:
      Date Created: 20240724 Date Completed: 20240829 Latest Revision: 20241031
    • Publication Date:
      20241031
    • Accession Number:
      PMC11362487
    • Accession Number:
      10.3758/s13428-024-02457-6
    • Accession Number:
      39048860