Predicting major adverse cardiac events using radiomics nomogram of pericoronary adipose tissue based on CCTA: A multi-center study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
    • Publication Information:
      Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
      Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
    • Subject Terms:
    • Abstract:
      Background: The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision-making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE).
      Purpose: To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE.
      Methods: We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1-year follow-up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re-hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post-CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical-radiological-radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble.
      Results: A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility.
      Conclusions: The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
      (© 2024 American Association of Physicists in Medicine.)
    • References:
      Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics‐2022 Update: A Report From the American Heart Association. Circulation. 2022;146(10):e141. doi:10.1161/CIR.0000000000001074.
      Bhatt DL, Lopes RD, Harrington RA. Diagnosis and treatment of acute coronary syndromes: a review. JAMA. 2022;327(7):662. doi:10.1001/jama.2022.0358.
      Andreini D, Magnoni M, Conte E, et al. Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events. JACC: Cardiovasc Imaging. 2020;13(8):1704‐1717. doi:10.1016/j.jcmg.2019.06.019.
      Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Räber L. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J. 2016;37(6):524‐535. doi:10.1093/eurheartj/ehv642.
      Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J. 2020;41(6):748‐758. doi:10.1093/eurheartj/ehz474.
      Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315‐327. doi:10.1161/CIRCRESAHA.118.313591.
      Goeller M, Tamarappoo BK, Kwan AC, et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20(6):636‐643. doi:10.1093/ehjci/jez013.
      Lee SE, Sung JM, Andreini D, et al. Association between changes in perivascular adipose tissue density and plaque progression. JACC: Cardiovasc Imaging. 2022;15(10):1760‐1767. doi:10.1016/j.jcmg.2022.04.016.
      Antoniades C, Shirodaria C. Detecting coronary inflammation with perivascular fat attenuation imaging. JACC: Cardiovasc Imaging. 2019;12(10):2011‐2014. doi:10.1016/j.jcmg.2018.12.024.
      Oikonomou EK, Marwan M, Desai MY, et al. Non‐invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post‐hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929‐939. doi:10.1016/S0140‐6736(18)31114‐0.
      Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16(2):83‐99. doi:10.1038/s41569‐018‐0097‐6.
      Lin A, Kolossváry M, Cadet S, et al. Radiomics‐based precision phenotyping identifies unstable coronary plaques from computed tomography angiography. JACC: Cardiovasc Imaging. 2022;15(5):859‐871. doi:10.1016/j.jcmg.2021.11.016.
      Yu M, Dai X, Deng J, Lu Z, Shen C, Zhang J. Diagnostic performance of perivascular fat attenuation index to predict hemodynamic significance of coronary stenosis: a preliminary coronary computed tomography angiography study. Eur Radiol. 2020;30(2):673‐681. doi:10.1007/s00330‐019‐06400‐8.
      Shang J, Ma S, Guo Y, et al. Prediction of acute coronary syndrome within 3 years using radiomics signature of pericoronary adipose tissue based on coronary computed tomography angiography. Eur Radiol. 2022;32(2):1256‐1266. doi:10.1007/s00330‐021‐08109‐z.
      Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563‐577. doi:10.1148/radiol.2015151169.
      Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749‐762. doi:10.1038/nrclinonc.2017.141.
      Aerts H. The potential of radiomic‐based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636. doi:10.1001/jamaoncol.2016.2631.
      Lambin P, Rios‐Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441‐446. doi:10.1016/j.ejca.2011.11.036.
      Kolossváry M, Park J, Bang JI, et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20(11):1250‐1258. doi:10.1093/ehjci/jez033.
      Kolossváry M, Karády J, Kikuchi Y, et al. Radiomics versus visual and histogram‐based assessment to identify atheromatous lesions at coronary CT angiography: an ex vivo study. Radiology. 2019;293(1):89‐96. doi:10.1148/radiol.2019190407.
      De Cecco CN, Van Assen M. Can radiomics help in the identification of vulnerable coronary plaque? Radiology. 2023;307(2):e223342. doi:10.1148/radiol.223342.
      Wang J, Zhou L, Chen H, Zeng S, Wu Q, Fang X. Predicting major adverse cardiac events based on multi‐parameter coronary computed tomography angiography. Med Phys. 2022;49(6):3612‐3623. doi:10.1002/mp.15616.
      Shang J, Ma S, Guo Y, et al. Prediction of acute coronary syndrome within 3 years using radiomics signature of pericoronary adipose tissue based on coronary computed tomography angiography. Eur Radiol. 2022;32(2):1256‐1266. doi:10.1007/s00330‐021‐08109‐z.
      Hu GQ, Ge YQ, Hu XK, Wei W. Predicting coronary artery calcified plaques using perivascular fat CT radiomics features and clinical risk factors. BMC Med Imaging. 2022;22(1):134. doi:10.1186/s12880‐022‐00858‐7.
      Yu L, Chen X, Ling R, et al. Radiomics features of pericoronary adipose tissue improve CT‐FFR performance in predicting hemodynamically significant coronary artery stenosis. Eur Radiol. 2023;33(3):2004‐2014. doi:10.1007/s00330‐022‐09175‐7. Published online October.
      Shaw LJ, Blankstein R, Bax JJ, et al. Society of cardiovascular computed tomography /North American Society of cardiovascular imaging – expert consensus document on coronary CT imaging of atherosclerotic plaque. J Cardiovasc Comput Tomogr. 2021;15(2):93‐109. doi:10.1016/j.jcct.2020.11.002.
      Si N, Shi K, Li N, et al. Identification of patients with acute myocardial infarction based on coronary CT angiography: the value of pericoronary adipose tissue radiomics. Eur Radiol. 2022;32(10):6868‐6877. doi:10.1007/s00330‐022‐08812‐5.
      Ma R, Van Assen M, Ties D, et al. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA. Eur Radiol. 2021;31(10):7251‐7261. doi:10.1007/s00330‐021‐07882‐1.
      Wen D, Ren Z, Xue R, et al. Lack of incremental prognostic value of pericoronary adipose tissue computed tomography attenuation beyond coronary artery disease reporting and data system for major adverse cardiovascular events in patients with acute chest pain. Circ Cardiovasc Imaging. 2023;16(7):536‐544. doi:10.1161/CIRCIMAGING.122.015120.
      Zwanenburg A, Valliéres M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High‐Throughput Image‐based Phenotyping. Radiology. 2020;295(2):328‐338. doi:10.1148/radiol.2020191145.
      Li B, Zheng X, Guo W, et al. Radiation pneumonitis prediction using multi‐omics fusion based on a novel machine learning pipeline. Hum centric Comput Inf Sci. 2022;12(0):660‐675. doi:10.22967/HCIS.2022.12.049.
      Tao P, Yi H, Wei C, Ge LY, Xu L. A method based on weighted F‐score and SVM for feature selection. In: 2013 25th Chinese Control and Decision Conference (CCDC). IEEE; 2013:4287‐4290. doi:10.1109/CCDC.2013.6561705.
      Li J, Cheng K, Wang S, et al. Feature selection: a data perspective. ACM Computing Surveys. 2018;50(6):1‐45. doi:10.1145/3136625.
      Liu X, Wang X, Su Q, Feature selection of medical data sets based on RS‐RELIEFF. In: 2015 12th International Conference on Service Systems and Service Management (ICSSSM). IEEE; 2015:1‐5. doi:10.1109/ICSSSM.2015.7170275.
      Psaltis PJ, Talman AH, Munnur K, et al. Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. Int J Cardiovasc Imaging. 2016;32(2):317‐328. doi:10.1007/s10554‐015‐0762‐3.
      Chun EJ, Han JH, Yoo SM, Lee HY, Song IS, White CS. Differences in the CT findings between vulnerable plaque and culprit lesions in acute coronary syndrome. J Cardiovasc Comput Tomogr. 2018;12(2):115‐117. doi:10.1016/j.jcct.2018.01.001.
      Chen Q, Pan T, Wang YN, et al. A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events. Radiology. 2023;307(2):e221693. doi:10.1148/radiol.221693.
      Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;59(12):1058‐1072. doi:10.1016/j.jacc.2011.09.079.
      Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114(12):1867‐1879. doi:10.1161/CIRCRESAHA.114.302699.
      Libby P, Loscalzo J, Ridker PM, et al. Inflammation, immunity, and infection in atherothrombosis. J Am Coll Cardiol. 2018;72(17):2071‐2081. doi:10.1016/j.jacc.2018.08.1043.
      Antonopoulos AS, Angelopoulos A, Papanikolaou P, et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication. JACC: Cardiovasc Imaging. 2022;15(3):460‐471. doi:10.1016/j.jcmg.2021.09.014.
      Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398):eaal2658. doi:10.1126/scitranslmed.aal2658.
      Kolossváry M, Kellermayer M, Merkely B, Maurovich‐Horvat P. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2018;33(1):26‐34. doi:10.1097/RTI.0000000000000268.
      Xu P, Xue Y, Schoepf UJ, et al. Radiomics: the next Frontier of cardiac computed tomography. Circ Cardiovasc Imaging. 2021;14(3):e011747. doi:10.1161/CIRCIMAGING.120.011747.
      Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel machine learning‐derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40(43):3529‐3543. doi:10.1093/eurheartj/ehz592.
      Wen D, Xu Z, An R, et al. Predicting haemodynamic significance of coronary stenosis with radiomics‐based pericoronary adipose tissue characteristics. Clin Radiol. 2022;77(2):e154‐e161. doi:10.1016/j.crad.2021.10.019.
    • Grant Information:
      SYH-3201150-0010 2021005 Jiangsu Provincial Medical Association Roentgen Imaging Research; HS2019002 Nantong Clinical Medi-cine Center; JC2021195 Nantong Basic Science Research
    • Contributed Indexing:
      Keywords: computed tomography angiography; major adverse cardiac events; nomogram; pericoronary adipose tissue; radiomics
    • Publication Date:
      Date Created: 20240723 Date Completed: 20241101 Latest Revision: 20241101
    • Publication Date:
      20241102
    • Accession Number:
      10.1002/mp.17324
    • Accession Number:
      39042398