Microscale Thermophoresis Analysis of Chromatin Interactions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
      (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Flores KJ, Kariawasam R, Gimenez XA, Helder S, Cubeddu L, Gamsjaeger R, Ataide FS (2015) Biophysical characterisation and quantification of nucleic acid-protein interactions: EMSA, MST and SPR. Curr Protein Pept Sci 16:727–734. https://doi.org/10.2174/1389203716666150505230806. (PMID: 10.2174/138920371666615050523080625961399)
      Oda M, Nakamura H (2000) Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition. Genes Cells 5:319–326. https://doi.org/10.1046/j.1365-2443.2000.00335.x. (PMID: 10.1046/j.1365-2443.2000.00335.x10886361)
      van Emmerik CL, van Ingen H (2019) Unspinning chromatin: revealing the dynamic nucleosome landscape by NMR. Prog Nucl Magn Reson Spectrosc 110:1–19. https://doi.org/10.1016/j.pnmrs.2019.01.002. (PMID: 10.1016/j.pnmrs.2019.01.00230803691)
      Ludwig C (1856) Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösung. Sitzungsber Akad Wiss Wien Math-Naturwiss 20:539.
      Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100. https://doi.org/10.1038/ncomms1093. (PMID: 10.1038/ncomms109320981028)
      Romain M, Thiroux B, Tardy M, Quesnel B, Thuru X (2020) Measurement of protein-protein interactions through microscale thermophoresis (MST). Bio Protoc 10:e3574. https://doi.org/10.21769/BioProtoc.3574. (PMID: 10.21769/BioProtoc.3574336595447842316)
      Seidel SA, Wienken CJ, Geissler S, Jerabek-Willemsen M, Duhr S, Reiter A, Trauner D, Braun D, Baaske P (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed Eng 51:10656–10659. https://doi.org/10.1002/anie.201204268. (PMID: 10.1002/anie.201204268)
      Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci USA 103:19678–19682. https://doi.org/10.1073/pnas.0603873103. (PMID: 10.1073/pnas.0603873103171643371750914)
      Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315. https://doi.org/10.1016/j.ymeth.2012.12.005. (PMID: 10.1016/j.ymeth.2012.12.00523270813)
      Bartoschik T, Galinec S, Kleusch C, Walkiewicz K, Breitsprecher D, Weigert S, Muller YA, You C, Piehler J, Vercruysse T, Daelemans D, Tschammer N (2018) Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci Rep 8:4977. https://doi.org/10.1038/s41598-018-23154-3. (PMID: 10.1038/s41598-018-23154-3295635565862892)
      Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, Breitsprecher D (2014) MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113. https://doi.org/10.1016/j.molstruc.2014.03.009. (PMID: 10.1016/j.molstruc.2014.03.009)
      Schubert T, Pusch MC, Diermeier S, Benes V, Kremmer E, Imhof A, Langst G (2012) Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol Cell 48:434–444. https://doi.org/10.1016/j.molcel.2012.08.021. (PMID: 10.1016/j.molcel.2012.08.02123022379)
      Zillner K, Filarsky M, Rachow K, Weinberger M, Langst G, Nemeth A (2013) Large-scale organization of ribosomal DNA chromatin is regulated by Tip5. Nucleic Acids Res 41:5251–5262. https://doi.org/10.1093/nar/gkt218. (PMID: 10.1093/nar/gkt218235805493664807)
      Su XC, Wang Y, Yagi H, Shishmarev D, Mason CE, Smith PJ, Vandevenne M, Dixon NE, Otting G (2014) Bound or free: interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 53:1925–1934. https://doi.org/10.1021/bi5001867. (PMID: 10.1021/bi500186724606314)
      Silva AP, Ryan DP, Galanty Y, Low JK, Vandevenne M, Jackson SP, Mackay JP (2016) The N-terminal region of chromodomain helicase DNA-binding protein 4 (CHD4) is essential for activity and contains a high mobility group (HMG) box-like-domain that can bind poly(ADP-ribose). J Biol Chem 291:924–938. https://doi.org/10.1074/jbc.M115.683227. (PMID: 10.1074/jbc.M115.68322726565020)
      Yamagata K, Kobayashi A (2017) The cysteine-rich domain of TET2 binds preferentially to mono- and dimethylated histone H3K36. J Biochem 161:327–330. https://doi.org/10.1093/jb/mvx004. (PMID: 10.1093/jb/mvx004281304135412023)
      Zillner K, Jerabek-Willemsen M, Duhr S, Braun D, Langst G, Baaske P (2012) Microscale thermophoresis as a sensitive method to quantify protein: nucleic acid interactions in solution. Methods Mol Biol 815:241–252. https://doi.org/10.1007/978-1-61779-424-7_18. (PMID: 10.1007/978-1-61779-424-7_1822130996)
      Zhang W, Duhr S, Baaske P, Laue E (2014) Microscale thermophoresis for the assessment of nuclear protein-binding affinities. Methods Mol Biol 1094:269–276. https://doi.org/10.1007/978-1-62703-706-8_21. (PMID: 10.1007/978-1-62703-706-8_2124162995)
      Schubert T, Längst G (2015) Studying epigenetic interactions using MicroScale Thermophoresis (MST). AIMS Biophys 2:370–380. https://doi.org/10.3934/biophy.2015.3.370. (PMID: 10.3934/biophy.2015.3.370)
      Willhoft O, McCormack EA, Aramayo RJ, Bythell-Douglas R, Ocloo L, Zhang X, Wigley DB (2017) Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding. elife 6:e25782. https://doi.org/10.7554/eLife.25782. (PMID: 10.7554/eLife.25782285859185472440)
      Schrader A, Gross T, Thalhammer V, Langst G (2015) Characterization of Dnmt1 binding and DNA methylation on nucleosomes and nucleosomal arrays. PLoS One 10:e0140076. https://doi.org/10.1371/journal.pone.0140076. (PMID: 10.1371/journal.pone.0140076264967044619679)
      Zocco M, Marasovic M, Pisacane P, Bilokapic S, Halic M (2016) The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin. Cell Discov 2:16004. https://doi.org/10.1038/celldisc.2016.4. (PMID: 10.1038/celldisc.2016.4274624514849473)
      Scheuermann TH, Padrick SB, Gardner KH, Brautigam CA (2016) On the acquisition and analysis of microscale thermophoresis data. Anal Biochem 496:79–93. https://doi.org/10.1016/j.ab.2015.12.013. (PMID: 10.1016/j.ab.2015.12.01326739938)
      Bailey KA, Marc F, Sandman K, Reeve JN (2002) Both DNA and histone fold sequences contribute to archaeal nucleosome stability. J Biol Chem 277:9293–9301. https://doi.org/10.1074/jbc.M110029200. (PMID: 10.1074/jbc.M11002920011751933)
      Henneman B, Dame RT (2015) Archaeal histones: dynamic and versatile genome architects. AIMS Microbiol 1:72–81. https://doi.org/10.3934/microbiol.2015.1.72. (PMID: 10.3934/microbiol.2015.1.72)
      Erkelens AM, Henneman B, van der Valk RA, Kirolos NCS, Dame RT (2023) Specific DNA binding of archaeal histones HMfA and HMfB. Front Microbiol 14:1166608. https://doi.org/10.3389/fmicb.2023.1166608. (PMID: 10.3389/fmicb.2023.11666083714353410151503)
      Henneman B, Heinsman J, Battjes J, Dame RT (2018) Quantitation of DNA-binding affinity using tethered particle motion. Methods Mol Biol 1837:257–275. https://doi.org/10.1007/978-1-4939-8675-0_14. (PMID: 10.1007/978-1-4939-8675-0_1430109615)
      Hammond CM, Stromme CB, Huang H, Patel DJ, Groth A (2017) Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 18:141–158. https://doi.org/10.1038/nrm.2016.159. (PMID: 10.1038/nrm.2016.159280533445319910)
      Mehrotra PV, Ahel D, Ryan DP, Weston R, Wiechens N, Kraehenbuehl R, Owen-Hughes T, Ahel I (2011) DNA repair factor APLF is a histone chaperone. Mol Cell 41:46–55. https://doi.org/10.1016/j.molcel.2010.12.008. (PMID: 10.1016/j.molcel.2010.12.008212117223443741)
      Corbeski I, Guo X, Eckhardt BV, Fasci D, Wiegant W, Graewert MA, Vreeken K, Wienk H, Svergun DI, Heck AJR, van Attikum H, Boelens R, Sixma TK, Mattiroli F, van Ingen H (2022) Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF. Sci Adv 8:eabo0517. https://doi.org/10.1126/sciadv.abo0517. (PMID: 10.1126/sciadv.abo0517358958159328677)
      Corbeski I, Dolinar K, Wienk H, Boelens R, van Ingen H (2018) DNA repair factor APLF acts as a H2A-H2B histone chaperone through binding its DNA interaction surface. Nucleic Acids Res 46:7138–7152. https://doi.org/10.1093/nar/gky507. (PMID: 10.1093/nar/gky507299058376101569)
      van Nuland R, van Schaik FMA, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HTM, van Ingen H (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6:12. https://doi.org/10.1186/1756-8935-6-12. (PMID: 10.1186/1756-8935-6-12236568343663649)
      Horn V, Jongkees SAK, van Ingen H (2020) Mimicking the nucleosomal context in peptide-based binders of a H3K36me reader increases binding affinity while altering the binding mode. Molecules 25:4951. https://doi.org/10.3390/molecules25214951. (PMID: 10.3390/molecules25214951331146577662849)
      Ballestas ME, Chatis PA, Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644. https://doi.org/10.1126/science.284.5414.641. (PMID: 10.1126/science.284.5414.64110213686)
      Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM (2006) The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311:856–861. https://doi.org/10.1126/science.1120541. (PMID: 10.1126/science.112054116469929)
      Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44. https://doi.org/10.1016/s0076-6879(03)75002-2. (PMID: 10.1016/s0076-6879(03)75002-214870657)
      Beauchemin C, Moerke NJ, Faloon P, Kaye KM (2014) Assay development and high-throughput screening for inhibitors of Kaposi’s sarcoma-associated herpesvirus N-terminal latency-associated nuclear antigen binding to nucleosomes. J Biomol Screen 19:947–958. https://doi.org/10.1177/1087057114520973. (PMID: 10.1177/1087057114520973245180644656118)
      van der Valk RA, Qin L, Moolenaar GF, Dame RT (2018) Quantitative determination of DNA bridging efficiency of chromatin proteins. Methods Mol Biol 1837:199–209. https://doi.org/10.1007/978-1-4939-8675-0_12. (PMID: 10.1007/978-1-4939-8675-0_1230109613)
      Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hagele H, Lichtnekert J, Hagemann JH, Rupanagudi KV, Ryu M, Schwarzenberger C, Hohenstein B, Hugo C, Uhl B, Reichel CA, Krombach F, Monestier M, Liapis H, Moreth K, Schaefer L, Anders HJ (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23:1375–1388. https://doi.org/10.1681/ASN.2011111077. (PMID: 10.1681/ASN.2011111077226775513402284)
      van der Berg JP, Madoori PK, Komarudin AG, Thunnissen AM, Driessen AJ (2015) Binding of the lactococcal drug dependent transcriptional regulator LmrR to its ligands and responsive promoter regions. PLoS One 10:e0135467. https://doi.org/10.1371/journal.pone.0135467. (PMID: 10.1371/journal.pone.0135467262679064534193)
      Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012. https://doi.org/10.1016/j.cell.2006.12.041. (PMID: 10.1016/j.cell.2006.12.041173505822932701)
    • Contributed Indexing:
      Keywords: Binding affinity; Chaperone; Chromatin; DNA; HMf; Histone; IDP; MST; Nucleosome; Peptide
    • Accession Number:
      0 (Chromatin)
      0 (Nucleosomes)
      0 (Histones)
      9007-49-2 (DNA)
      0 (DNA-Binding Proteins)
      0 (Histone Chaperones)
    • Publication Date:
      Date Created: 20240719 Date Completed: 20240719 Latest Revision: 20240719
    • Publication Date:
      20240719
    • Accession Number:
      10.1007/978-1-0716-3930-6_17
    • Accession Number:
      39028515