Comparative pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine-A literature review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Kämmerer W;Kämmerer W
  • Source:
    Human psychopharmacology [Hum Psychopharmacol] 2024 Nov; Vol. 39 (6), pp. e2910. Date of Electronic Publication: 2024 Jul 18.
  • Publication Type:
    Journal Article; Review; Comparative Study
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley & Sons Country of Publication: England NLM ID: 8702539 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1077 (Electronic) Linking ISSN: 08856222 NLM ISO Abbreviation: Hum Psychopharmacol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chichester, Sussex, England : Wiley & Sons, c1986-
    • Subject Terms:
    • Abstract:
      Objective: To compare the pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine (LDX).
      Methods: A search of Medline and Embase was conducted to identify relevant articles for this literature review.
      Results: Dexamphetamine and LDX, a prodrug of dexamphetamine, are indicated for the treatment of attention-deficit/hyperactivity disorder. It has been suggested that LDX may have a reduced potential for oral abuse compared to immediate-release dexamphetamine. As a prodrug, LDX has the same pharmacodynamic properties as dexamphetamine. A study in healthy adults showed that the pharmacokinetic profile of dexamphetamine following oral administration of LDX is essentially identical to that of an equimolar dose of dexamphetamine administered 1 h later. In addition, dexamphetamine produced subjective drug liking effects comparable to those produced by LDX. LDX showed linear dose proportional pharmacokinetics up to a dose of 250 mg, indicating a lack of overdose protection at supratherapeutic doses. Furthermore, the exposure to dexamphetamine released from LDX may be prolonged by the consumption of alkalizing agents.
      Conclusions: The available evidence from pharmacodynamic, pharmacokinetic and abuse liability studies suggests a comparable potential for oral abuse of dexamphetamine and LDX.
      (© 2024 The Author(s). Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons Ltd.)
    • References:
      Adler, L. A., Alperin, S., Leon, T., & Faraone, S. V. (2017). Pharmacokinetic and pharmacodynamic properties of lisdexamfetamine in adults with attention‐deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 27(2), 196–199. https://doi.org/10.1089/cap.2016.0121.
      Anggard, E., Gunne, L. M., Jonsson, L. E., & Niklasson, F. (1970). Pharmacokinetic and clinical studies on amphetamine dependent subjects. European Journal of Clinical Pharmacology, 3(1), 3–11. https://doi.org/10.1007/bf00560284.
      Angrist, B., Corwin, J., Bartlik, B., & Cooper, T. (1987). Early pharmacokinetics and clinical effects of oral D‐amphetamine in normal subjects. Biological Psychiatry, 22(11), 1357–1368. https://doi.org/10.1016/0006‐3223(87)90070‐9.
      Asatoor, A. M., Galman, B. R., Johnson, J. R., & Milne, M. D. (1965). The excretion of dexamphetamine and its derivatives. British Journal of Pharmacology and Chemotherapy, 24(1), 293–300. https://doi.org/10.1111/j.1476‐5381.1965.tb02105.x.
      Ayano, G., Demelash, S., Gizachew, Y., Tsegay, L., & Alati, R. (2023). The global prevalence of attention deficit hyperactivity disorder in children and adolescents: An umbrella review of meta‐analyses. Journal of Affective Disorders, 339, 860–866. https://doi.org/10.1016/j.jad.2023.07.071.
      Bach, M. V., Coutts, R. T., & Baker, G. B. (1999). Involvement of CYP2D6 in the in vitro metabolism of amphetamine, two N‐alkylamphetamines and their 4‐methoxylated derivatives. Xenobiotica, 29(7), 719–732. https://doi.org/10.1080/004982599238344.
      Baggot, J. D., Davis, L. E., & Neff, C. A. (1972). Extent of plasma protein binding of amphetamine in different species. Biochemical Pharmacology, 21(13), 1813–1816. https://doi.org/10.1016/0006‐2952(72)90177‐3.
      Beckett, A. H., & Rowland, M. (1965). Urinary excretion kinetics of amphetamine in man. Journal of Pharmacy & Pharmacology, 17(10), 628–639. https://doi.org/10.1111/j.2042‐7158.1965.tb07575.x.
      Biederman, J., Boellner, S. W., Childress, A., Lopez, F. A., Krishnan, S., & Zhang, Y. (2007). Lisdexamfetamine dimesylate and mixed amphetamine salts extended‐release in children with ADHD: A double‐blind, placebo‐controlled, crossover analog classroom study. Biological Psychiatry, 62(9), 970–976. https://doi.org/10.1016/j.biopsych.2007.04.015.
      Boellner, S. W., Stark, J. G., Krishnan, S., & Zhang, Y. (2010). Pharmacokinetics of lisdexamfetamine dimesylate and its active metabolite, d‐amphetamine, with increasing oral doses of lisdexamfetamine dimesylate in children with attention‐deficit/hyperactivity disorder: A single‐dose, randomized, open‐label, crossover study. Clinical Therapeutics, 32(2), 252–264. https://doi.org/10.1016/j.clinthera.2010.02.011.
      Brown, G. L., Hunt, R. D., Ebert, M. H., Bunney, W. E., Jr., & Kopin, I. J. (1979). Plasma levels of d‐amphetamine in hyperactive children. Serial behavior and motor responses. Psychopharmacology (Berl), 62(2), 133–140. https://doi.org/10.1007/bf00427126.
      Buckley, N. A., Dawson, A. H., & Isbister, G. K. (2014). Serotonin syndrome. BMJ, 348(Feb 19), g1626. https://doi.org/10.1136/bmj.g1626.
      Caras, S., & Sharpe, T. (2020). Pharmacokinetics of AR19, an immediate‐release amphetamine sulfate formulation designed to deter manipulation for administration via nonoral routes: Bioequivalence to reference racemic amphetamine sulfate, dose proportionality, and food effect. Journal of Child and Adolescent Psychopharmacology, 30(2), 69–80. https://doi.org/10.1089/cap.2019.0133.
      Cárdenas, L., Houle, S., Kapur, S., & Busto, U. E. (2004). Oral D‐amphetamine causes prolonged displacement of [11C]raclopride as measured by PET. Synapse, 51(1), 27–31. https://doi.org/10.1002/syn.10282.
      Childress, A. C., Findling, R. L., Wu, J., Kollins, S. H., Wang, Y., Martin, P., & Robertson, B. (2020). Lisdexamfetamine dimesylate for preschool children with attention‐deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 30(3), 128–136. https://doi.org/10.1089/cap.2019.0117.
      Clausen, S. B., Read, S. C., & Tulloch, S. J. (2005). Single‐ and multiple‐dose pharmacokinetics of an oral mixed amphetamine salts extended‐release formulation in adults. CNS Spectrums, 10(12 Suppl 20), 6–15. https://doi.org/10.1017/s109285290000239x.
      Danielson, T. J., & Boulton, A. A. (1976). Distribution and occurrence of amphetamine and p‐hydroxyamphetamine in tissues of the rat after injection of d‐amphetamine sulfate. European Journal of Pharmacology, 37(2), 257–264. https://doi.org/10.1016/0014‐2999(76)90033‐9.
      Davis, C. R., Hernandez, M., & Stock, S. (2020). Adolescent polypharmacy and serotonin syndrome. Clinical Neuropharmacology, 43(1), 28–30. https://doi.org/10.1097/WNF.0000000000000375.
      Davis, J. M., Kopin, I. J., Lemberger, L., & Axelrod, J. (1971). Effects of urinary pH on amphetamine metabolism. Annals of the New York Academy of Sciences, 179(1), 493–501. https://doi.org/10.1111/j.1749‐6632.1971.tb46926.x.
      Dewey, S. L., Smith, G. S., Logan, J., Brodie, J. D., Fowler, J. S., & Wolf, A. P. (1993). Striatal binding of the PET ligand 11C‐raclopride is altered by drugs that modify synaptic dopamine levels. Synapse, 13(4), 350–356. https://doi.org/10.1002/syn.890130407.
      Dolder, P. C., Strajhar, P., Vizeli, P., Hammann, F., Odermatt, A., & Liechti, M. E. (2017). Pharmacokinetics and pharmacodynamics of lisdexamfetamine compared with D‐amphetamine in healthy subjects. Frontiers in Pharmacology, 8, 617. https://doi.org/10.3389/fphar.2017.00617.
      Dring, L. G., Smith, R. L., & Williams, R. T. (1966). The fate of amphetamine in man and other mammals. Journal of Pharmacy & Pharmacology, 18(6), 402–404. https://doi.org/10.1111/j.2042‐7158.1966.tb07896.x.
      Dring, L. G., Smith, R. L., & Williams, R. T. (1970). The metabolic fate of amphetamine in man and other species. Biochemical Journal, 116(3), 425–435. https://doi.org/10.1042/bj1160425.
      Easton, N., Steward, C., Marshall, F., Fone, K., & Marsden, C. (2007). Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology, 52(2), 405–414. https://doi.org/10.1016/j.neuropharm.2006.07.035.
      Ermer, J., Homolka, R., Martin, P., Buckwalter, M., Purkayastha, J., & Roesch, B. (2010). Lisdexamfetamine dimesylate: Linear dose‐proportionality, low intersubject and intrasubject variability, and safety in an open‐label single‐dose pharmacokinetic study in healthy adult volunteers. The Journal of Clinical Pharmacology, 50(9), 1001–1010. https://doi.org/10.1177/0091270009357346.
      Ermer, J., Martin, P., Corcoran, M., & Matsuo, Y. (2020). A phase 1, randomized, double‐blind, placebo‐controlled study to evaluate the safety, tolerability, and pharmacokinetics of single and multiple doses of lisdexamfetamine dimesylate in Japanese and Caucasian healthy adult subjects. Neuropsychopharmacology Reports, 40(1), 16–29. https://doi.org/10.1002/npr2.12082.
      Ermer, J. C., Haffey, M. B., Doll, W. J., Martin, P., Sandefer, E. P., Dennis, K., Corcoran, M., Trespidi, L., & Page, R. C. (2012). Pharmacokinetics of lisdexamfetamine dimesylate after targeted gastrointestinal release or oral administration in healthy adults. Drug Metabolism & Disposition, 40(2), 290–297. https://doi.org/10.1124/dmd.111.040691.
      Faraone, S. (2019). Motivations and behaviors of non‐medical use of attention deficit hyperactivity disorder (ADHD) medications among adults. APSARD Annual Meeting. Washington, DC, USA.
      Faraone, S. V. (2018). The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention‐deficit/hyperactivity disorder and other psychiatric comorbidities. Neuroscience & Biobehavioral Reviews, 87, 255–270. https://doi.org/10.1016/j.neubiorev.2018.02.001.
      Faraone, S. V., Biederman, J., & Mick, E. (2006). The age‐dependent decline of attention deficit hyperactivity disorder: A meta‐analysis of follow‐up studies. Psychological Medicine, 36(2), 159–165. https://doi.org/10.1017/s003329170500471x.
      Faraone, S. V., Rostain, A. L., Montano, C. B., Mason, O., Antshel, K. M., & Newcorn, J. H. (2020). Systematic review: Nonmedical use of prescription stimulants: Risk factors, outcomes, and risk reduction strategies. Journal of the American Academy of Child & Adolescent Psychiatry, 59(1), 100–112. https://doi.org/10.1016/j.jaac.2019.06.012.
      Goodman, D. W. (2007). Lisdexamfetamine dimesylate: The first prodrug stimulant. Psychiatry, 4(8), 39–45.
      Green, C. E., LeValley, S. E., & Tyson, C. A. (1986). Comparison of amphetamine metabolism using isolated hepatocytes from five species including human. Journal of Pharmacology and Experimental Therapeutics, 237(3), 931–936. https://www.ncbi.nlm.nih.gov/pubmed/3712286.
      Haffey, M. B., Buckwalter, M., Zhang, P., Homolka, R., Martin, P., Lasseter, K. C., & Ermer, J. C. (2009). Effects of omeprazole on the pharmacokinetic profiles of lisdexamfetamine dimesylate and extended‐release mixed amphetamine salts in adults. Postgraduate Medical Journal, 121(5), 11–19. https://doi.org/10.3810/pgm.2009.09.2048.
      Heal, D. J., Smith, S. L., Gosden, J., & Nutt, D. J. (2013). Amphetamine, past and presenta pharmacological and clinical perspective. Journal of Psychopharmacology, 27(6), 479–496. https://doi.org/10.1177/0269881113482532.
      Herbrink, M., Nuijten, M., Nuijen, B., Huitema, A. D. R., Beijnen, J. H., Hendriks, V. M., Blanken, P., Janmohamed, A., & van den Brink, W. (2018). Pharmacokinetics of sustained‐release oral dexamphetamine sulfate in cocaine and heroin‐dependent patients. Journal of Clinical Psychopharmacology, 38(3), 212–217. https://doi.org/10.1097/jcp.0000000000000862.
      Hutson, P. H., Pennick, M., & Secker, R. (2014). Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: A novel d‐amphetamine pro‐drug. Neuropharmacology, 87, 41–50. https://doi.org/10.1016/j.neuropharm.2014.02.014.
      Janssen Pharmaceuticals. (2020). Prescribing information SPRAVATO®.
      Jasinski, D. R., & Krishnan, S. (2009). Abuse liability and safety of oral lisdexamfetamine dimesylate in individuals with a history of stimulant abuse. Journal of Psychopharmacology, 23(4), 419–427. https://doi.org/10.1177/0269881109103113.
      Krishnan, S., & Zhang, Y. (2008). Relative bioavailability of lisdexamfetamine 70‐mg capsules in fasted and fed healthy adult volunteers and in solution: A single‐dose, crossover pharmacokinetic study. The Journal of Clinical Pharmacology, 48(3), 293–302. https://doi.org/10.1177/0091270007310381.
      Krishnan, S. M., Pennick, M., & Stark, J. G. (2008). Metabolism, distribution and elimination of lisdexamfetamine dimesylate: Open‐label, single‐centre, phase I study in healthy adult volunteers. Clinical Drug Investigation, 28(12), 745–755. https://doi.org/10.2165/0044011‐200828120‐00002.
      Krishnan, S. M., & Stark, J. G. (2008). Multiple daily‐dose pharmacokinetics of lisdexamfetamine dimesylate in healthy adult volunteers. Current Medical Research and Opinion, 24(1), 33–40. https://doi.org/10.1185/030079908x242737.
      Krisko, I., Lewis, E., & Johnson, J. E., 3rd. (1969). Severe hyperpyrexia due to tranylcypromine‐amphetamine toxicity. Annals of Internal Medicine, 70(3), 559–564. https://doi.org/10.7326/0003‐4819‐70‐3‐559.
      López, F. A., & Leroux, J. R. (2013). Long‐acting stimulants for treatment of attention‐deficit/hyperactivity disorder: A focus on extended‐release formulations and the prodrug lisdexamfetamine dimesylate to address continuing clinical challenges. ADHD Attention Deficit and Hyperactivity Disorders, 5(3), 249–265. https://doi.org/10.1007/s12402‐013‐0106‐x.
      Martin, P., Dirks, B., Gertsik, L., Walling, D., Stevenson, A., Corcoran, M., Raychaudhuri, A., & Ermer, J. (2014). Safety and pharmacokinetics of lisdexamfetamine dimesylate in adults with clinically stable schizophrenia: A randomized, double‐blind, placebo‐controlled trial of ascending multiple doses. Journal of Clinical Psychopharmacology, 34(6), 682–689. https://doi.org/10.1097/JCP.0000000000000205.
      Mason, A. (1962). Fatal reaction associated with tranylcypromine and methylamphetamine. The Lancet, 279(7238), 1073. https://doi.org/10.1016/s0140‐6736(62)92173‐6.
      McGough, J. J., Biederman, J., Greenhill, L. L., McCracken, J. T., Spencer, T. J., Posner, K., Wigal, S., Gornbein, J., Tulloch, S., & Swanson, J. M. (2003). Pharmacokinetics of SLI381 (ADDERALL XR), an extended‐release formulation of Adderall. Journal of the American Academy of Child & Adolescent Psychiatry, 42(6), 684–691. https://doi.org/10.1097/01.Chi.0000046850.56865.Cb.
      McIntyre, H. B., Firemark, H. M., Cho, A. K., Bodner, L., & Gomez, M. (1981). Computer analyzed EEG in amphetamine‐responsive hyperactive children. Psychiatry Research, 4(2), 189–197. https://doi.org/10.1016/0165‐1781(81)90022‐6.
      MEDICE. (2023). SmPC Amfexa®.
      Miller, H. H., Shore, P. A., & Clarke, D. E. (1980). In vivo monoamine oxidase inhibition by d‐amphetamine. Biochemical Pharmacology, 29(10), 1347–1354. https://doi.org/10.1016/0006‐2952(80)90429‐3.
      Mohammadi, M., & Akhondzadeh, S. (2011). Advances and considerations in attention‐deficit/hyperactivity disorder pharmacotherapy. Acta Medica Iranica, 49(8), 487–498.
      Paladin Labs Inc. (2020). Dexedrine®/Dexedrine® spansule product monograph.
      Pennick, M. (2010). Absorption of lisdexamfetamine dimesylate and its enzymatic conversion to d‐amphetamine. Neuropsychiatric Disease and Treatment, 6, 317–327. https://doi.org/10.2147/ndt.s9749.
      Pennick, M. (2013). Metabolism of the prodrug lisdexamfetamine dimesylate in human red blood cells from normal and sickle cell disease donors. Journal of Drug Assessment, 2(1), 17–20. https://doi.org/10.3109/21556660.2013.775132.
      Perez‐Reyes, M., White, W. R., McDonald, S. A., & Hicks, R. E. (1992). Interaction between ethanol and dextroamphetamine: Effects on psychomotor performance. Alcoholism: Clinical and Experimental Research, 16(1), 75–81. https://doi.org/10.1111/j.1530‐0277.1992.tb00640.x.
      Prior, F. H., Isbister, G. K., Dawson, A. H., & Whyte, I. M. (2002). Serotonin toxicity with therapeutic doses of dexamphetamine and venlafaxine. Medical Journal of Australia, 176(5), 240–241. https://doi.org/10.5694/j.1326‐5377.2002.tb04385.x.
      Quinn, D. I., Wodak, A., & Day, R. O. (1997). Pharmacokinetic and pharmacodynamic principles of illicit drug use and treatment of illicit drug users. Clinical Pharmacokinetics, 33(5), 344–400. https://doi.org/10.2165/00003088‐199733050‐00003.
      Riddle, E. L., Hanson, G. R., & Fleckenstein, A. E. (2007). Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter‐2. European Journal of Pharmacology, 571(1), 25–28. https://doi.org/10.1016/j.ejphar.2007.05.044.
      Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I., & Partilla, J. S. (2001). Amphetamine‐type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse, 39(1), 32–41. https://doi.org/10.1002/1098‐2396(20010101)39:1<32::AID‐SYN5>3.0.CO;2‐3.
      Rowley, H. L., Kulkarni, R. S., Gosden, J., Brammer, R. J., Hackett, D., & Heal, D. J. (2014). Differences in the neurochemical and behavioural profiles of lisdexamfetamine methylphenidate and modafinil revealed by simultaneous dual‐probe microdialysis and locomotor activity measurements in freely‐moving rats. Journal of Psychopharmacology, 28(3), 254–269. https://doi.org/10.1177/0269881113513850.
      Schnell, R. C., & Miya, T. S. (1970). Altered absorption of drugs from the rat small intestine by carbonic anhydrase inhibition. Journal of Pharmacology and Experimental Therapeutics, 174(2), 177–184. https://www.ncbi.nlm.nih.gov/pubmed/4988984.
      Sharman, J., & Pennick, M. (2014). Lisdexamfetamine prodrug activation by peptidase‐mediated hydrolysis in the cytosol of red blood cells. Neuropsychiatric Disease and Treatment, 10, 2275–2280. https://doi.org/10.2147/ndt.S70382.
      Stark, J. G., Engelking, D., McMahen, R., & Sikes, C. (2016). A randomized crossover study to assess the pharmacokinetics of a novel amphetamine extended‐release orally disintegrating tablet in healthy adults. Postgraduate Medicine, 128(7), 648–655. https://doi.org/10.1080/00325481.2016.1216716.
      Sulzer, D., Chen, T. K., Lau, Y. Y., Kristensen, H., Rayport, S., & Ewing, A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. Journal of Neuroscience, 15(5 Pt 2), 4102–4108. https://doi.org/10.1523/jneurosci.15‐05‐04102.1995.
      Takeda Pharmaceuticals. (2023a). Mechanism of delivery—How Vyvanse is delivered within the body. Retrieved 15 August from https://www.vyvansepro.com/adhd/delivery‐mechanism.
      Takeda Pharmaceuticals. (2023b). SmPC Elvanse®.
      Tulloch, S. J., Zhang, Y., McLean, A., Wolf, K. N., & Mays, D. A. (2002). SLI381 (Adderall XR), a two‐component, extended‐release formulation of mixed amphetamine salts: Bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 22(11), 1405–1415. https://doi.org/10.1592/phco.22.16.1405.33687.
      US Department of Justice Drug Enforcement Administration. (2022). Drugs of abuse. A DEA resource guide / 2022 edition. Retrieved 6 September from https://www.dea.gov/sites/default/files/2022‐12/2022_DOA_eBook_File_Final.pdf.
      Wan, S. H., Matin, S. B., & Azarnoff, D. L. (1978). Kinetics, salivary excretion of amphetamine isomers, and effect of urinary pH. Clinical Pharmacology & Therapeutics, 23(5), 585–590. https://doi.org/10.1002/cpt1978235585.
      Wang, Y., Yu, M., Yan, B., Martin, P., & Robertson, B. (2019). Effects of food on the bioavailability of amphetamine in healthy adults after administration of SHP465 mixed amphetamine salts extended‐release capsules. Drugs in R&D, 19(2), 167–175. https://doi.org/10.1007/s40268‐019‐0267‐y.
      Wong, Y. N., Wang, L., Hartman, L., Simcoe, D., Chen, Y., Laughton, W., Eldon, R., Markland, C., & Grebow, P. (1998). Comparison of the single‐dose pharmacokinetics and tolerability of modafinil and dextroamphetamine administered alone or in combination in healthy male volunteers. The Journal of Clinical Pharmacology, 38(10), 971–978. https://doi.org/10.1002/j.1552‐4604.1998.tb04395.x.
      Zeck, P. (1961). The dangers of some antidepressant drugs. Medical Journal of Australia, 2, 607.
      Zhu, H. J., Wang, J. S., DeVane, C. L., Williard, R. L., Donovan, J. L., Middaugh, L. D., Gibson, B. B., Patrick, K. S., & Markowitz, J. S. (2006). The role of the polymorphic efflux transporter P‐glycoprotein on the brain accumulation of d‐methylphenidate and d‐amphetamine. Drug Metabolism & Disposition, 34(7), 1116–1121. https://doi.org/10.1124/dmd.106.009605.
      Zhu, H. J., Wang, J. S., Donovan, J. L., Jiang, Y., Gibson, B. B., DeVane, C. L., & Markowitz, J. S. (2008). Interactions of attention‐deficit/hyperactivity disorder therapeutic agents with the efflux transporter P‐glycoprotein. European Journal of Pharmacology, 578(2–3), 148–158. https://doi.org/10.1016/j.ejphar.2007.09.035.
    • Contributed Indexing:
      Keywords: abuse; dexamphetamine; lisdexamfetamine; pharmacokinetics; pharmacology
    • Accession Number:
      0 (Central Nervous System Stimulants)
      TZ47U051FI (Dextroamphetamine)
      SJT761GEGS (Lisdexamfetamine Dimesylate)
      0 (Prodrugs)
    • Publication Date:
      Date Created: 20240718 Date Completed: 20241113 Latest Revision: 20241202
    • Publication Date:
      20241204
    • Accession Number:
      10.1002/hup.2910
    • Accession Number:
      39024047