Effects of anther-stigma position on cross-pollination efficiency in a hermaphroditic plant.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
    • Publication Information:
      Publication: <2018-> : [Philadelphia, PA] : Wiley
      Original Publication: Baltimore Md : Botanical Society Of America
    • Subject Terms:
    • Abstract:
      Premise: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy.
      Methods: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions.
      Results: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > h B 2  < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected.
      Conclusions: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.
      (© 2024 The Author(s). American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.)
    • References:
      Arbo, M. M. 2005. Estudios sistemáticos en Turnera (Turneraceae). III. series anomalae y Turnera. Bonplandia 14: 3‐4.
      Armbruster, W. S., T. F. Hansen, C. Pélabon, R. Pérez‐Barrales, and J. Maad. 2009. The adaptive accuracy of flowers: measurement and microevolutionary patterns. Annals of Botany 103: 1529‐1545.
      Armbruster, W. S., C. Pélabon, T. F. Hansen, and C. P. H. Mulder. 2004. Floral integration, modularity, and precision: distinguishing complex adaptations from genetic constraints. In M. Piggliucci and K. Preston [eds.], Phenotypic integration: studying the ecology and evolution of complex phenotypes, 23‐49. Oxford University Press, New York.
      Ashman, T. L., and C. J. Majetic. 2006. Genetic constraints on floral evolution: a review and evaluation of patterns. Heredity 96: 343–352.
      Baranzelli, M. C., A. N. Sérsic, and A. A. Cocucci. 2014. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae). Journal of Evolutionary Biology 27: 724‐736.
      Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, et al. 2015. Package ‘lme4’. Convergence 12: 2.
      Benıtez‐Vieyra, S., M. Medina, E. Glinos, and A. A. Cocucci. 2006. Pollination mechanism and pollinator‐mediated selection in Cyclopogon elatus (Orchidaceae). Functional Ecology 20: 948–957.
      Benitez‐Vieyra, S., M. Ordano, J. Fornoni, K. Boege, and C. A. Domínguez. 2010. Selection on signal–reward correlation: limits and opportunities to the evolution of deceit in Turnera ulmifolia L. Journal of Evolutionary Biology 23: 2760‐2767.
      Campbell, D. R., N. M. Waser, and M. V. Price. 1996. Mechanisms of hummingbird‐mediated selection for flower width in Ipomopsis aggregata. Ecology 77: 1463‐1472.
      Canty, A., and B. Ripley. 2022. boot: Bootstrap R (S‐Plus) Functions. R package version 1.3–3.1. https://cran.r-project.org/web/packages/boot/boot.pdf.
      Carvallo, G. O., and R. Medel. 2010 Effects of herkogamy and inbreeding on the mating system of Mimulus luteus in the absence of pollinators. Evolutionary Ecology 24: 509‐522.
      Castillo, R. A., C. Cordero, and C. A. Domínguez. 2002. Are reward polymorphisms subject to frequency‐ and density‐dependent selection? Evidence from a monoecious species pollinated by deceit. Journal of Evolutionary Biology 15: 544‐552.
      Charlesworth, D., and B. Charlesworth. 1979. A model for the evolution of distyly. The American Naturalist 114: 467‐498.
      Charnov, E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129‐136.
      Conner, J. K., and D. L. Hartl. 2004. A primer of ecological genetics. Sunderland, MA: Sinauer Associates.
      Damián, X., J. Fornoni, C. A. Domínguez, and K. Boege. 2018. Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Functional Ecology 32: 234‐246.
      Damián, X., S. Ochoa‐López, A. Gaxiola, J. Fornoni, C. A. Domínguez, and K. Boege. 2019. Natural selection acting on integrated phenotypes: covariance among functional leaf traits increases plant fitness. New Phytologist 225: 546‐557.
      Darwin, C. 1877. The various contrivances by which orchids are fertilised by insects. John Murray, London.
      de Jong, T. J., N. M. Waser, and P. G. Klinkhamer. 1993. Geitonogamy: the neglected side of selfing. Trends in Ecology and Evolution 8: 321‐325.
      de Jong, T. J., and P. G. Klinkhamer. 2005. Evolutionary ecology of plant reproductive strategies. Cambridge University Press, Cambridge, United Kingdom.
      Dingemanse, N. J., and N. A. Dochtermann. 2013. Quantifying individual variation in behaviour: mixed‐effect modelling approaches. Journal of Animal Ecology 82: 39‐54.
      Elias, T. S., W. R. Rozich, and L. Newcombe. 1975. The foliar and floral nectaries of Turnera ulmifolia L. American Journal of Botany 62: 570‐576.
      Fishman, L., and J. H. Willis. 2008. Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytologist 177: 802‐810.
      Fornoni, J., and C. A. Domínguez. 2015. Beyond the heterostylous syndrome. New Phytologist 206: 1191‐1192.
      Galloway, L. F., T. Cirigliano, and K. Gremski. 2002. The contribution of display size and dichogamy to potential geitonogamy in Campanula americana. International Journal of Plant Science 163: 133‐139.
      Harder, L. D., and S. C. Barrett (Eds.). 2006. Ecology and evolution of flowers. Oxford University Press, New York, USA.
      Herlihy, C. R., and C. G. Eckert. 2007. Evolutionary analysis of a key floral trait in Aquilegia canadensis (Ranunculaceae): genetic variation in herkogamy and its effect on the mating system. Evolution 61: 1661‐1674.
      Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195‐204.
      Kilnkhamer P. G. L., and T. J. de Jong. 1993. Attractiveness to pollinators: a plant's dilemma. Oikos 66: 180‐184.
      Lloyd, D. G. 1977. Genetic and phenotypic models of natural selection. Journal of Theoretical Biology 69: 543‐560.
      Lloyd, D. G., and C. J. Webb. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zealand Journal of Botany 24: 135‐162.
      Medrano, M., R. Requerey, J. D. Karron, and C. M. Herrera. 2012. Herkogamy and mate diversity in the wild daffodil Narcissus longispathus: beyond the selfing–outcrossing paradigm in the evolution of mixed mating. Plant Biology 14: 801‐810.
      Ne'eman, G., A. Jurgens, L. Newstrom‐Lloyd, S. G. Potts, and A. Dafni. 2010. A framework for comparing pollinator performance: effectiveness and efficiency. Botanical Review 85: 435‐451.
      Opedal, Ø. H. 2018. Herkogamy, a principal functional trait of plant reproductive biology. International Journal of Plant Science 179: 677‐687.
      Opedal, Ø. H., G. H. Bolstad, T. F. Hansen, W. S. Armbruster, and C. Pélabon. 2017. The evolvability of herkogamy: quantifying the evolutionary potential of a composite trait. Evolution 71: 1572‐1586.
      Paglia, I. A., A. Ribeiro Pinto, F. W. Amorin, G. Arceo‐Gómez, and L. Freitas. 2023. Intra‐individual floral variation improves male fitness in a hummingbird‐pollinated species. Flora 302: 152270.
      Poblete Palacios, J. A., F. Soteras, and A. A. Cocucci. 2019. Mechanical fit between flower and pollinators in relation to realized precision and accuracy in the hummingbird‐pollinated Dolichandra cynanchoides. Biological Journal of the Linnean Society 126: 655‐665.
      R Development Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: http://www.R-project.org/.
      Shore, J. S., M. M. Arbo, and A. Fernández. 2006. Breeding system variation, genetics and evolution in the Turneraceae. New Phytologist 171: 539‐551.
      Sicard, A., and M. Lenhard. 2011. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Annals of Botany 107: 1433‐1443.
      Smith, R. A., and M. D. Rausher. 2008. Selection for character displacement is constrained by the genetic architecture of floral traits in the ivyleaf morning glory. Evolution 62: 2829‐2841.
      Sosenski, P., S. E. Ramos, C. A. Domínguez, K. Boege, and J. Fornoni. 2017. Pollination biology of the hexaploid self‐compatible species Turnera velutina (Passifloraceae). Plant Biology 19: 101‐107.
      Toräng, P., L. Vikström, J. Wunder, S. Wötzel, G. Coupland, and J. Ågren. 2017. Evolution of the selfing syndrome: anther orientation and herkogamy together determine reproductive assurance in a self‐compatible plant. Evolution 71: 2206‐2218.
      Torres‐Hernández, L., V. Rico‐Gray, C. Castillo‐Guevara, and J. A. Vergara. 2000. Effect of nectar‐foraging ants and wasps on the reproductive fitness of Turnera ulmifolia (Turneraceae) in a coastal sand dune in Mexico. Acta Zoológica Mexicana 81: 13‐21.
      Truyens, S., M. M. Arbo, and J. S. Shore. 2005. Phylogenetic relationships, chromosome and breeding system evolution in Turnera (Turneraceae): inferences from ITS sequence data. American Journal of Botany 92: 1749‐1758.
      Villamil, N., K. Boege, M. Bell, and G. Stone. 2019. Testing the distraction hypothesis: do extrafloral nectaries reduce ant‐pollinator conflict? Journal of Ecology 107: 1377‐1391.
      Visscher, P. M., W. G. Hill, and N. R. Wray. 2008. Heritability in the genomics era concepts and misconceptions. Nature Reviews Genetics 9: 255‐266.
      Webb, C. J., and D. G. Lloyd. 1986, The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany 24:163‐178.
      Wood, S. N. 2017 Generalized additive models: An introduction with R (2nd edition). Chapman and Hall/CRC.
      Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R (574, p. 574). Springer, New York, New York, USA.
    • Contributed Indexing:
      Keywords: context‐dependence; cross‐pollination; geitonogamy; herkogamy; mating system; outcrossing; selfing
    • Publication Date:
      Date Created: 20240716 Date Completed: 20240723 Latest Revision: 20240723
    • Publication Date:
      20240723
    • Accession Number:
      10.1002/ajb2.16377
    • Accession Number:
      39010307