A flexible glucose biosensor modified by reduced-swelling and conductive zwitterionic hydrogel enzyme membrane.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • Publication Information:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • Subject Terms:
    • Abstract:
      This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al 3+ and anionic group -COO - of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al 3+ and Cl - , the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al 3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al 3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
    • References:
      Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu H-D, Huang W. Hydrogel-based flexible electronics. Adv Mater. 2023;35(14):2205326. https://doi.org/10.1002/adma.202205326 . (PMID: 10.1002/adma.202205326)
      Bandodkar AJ, Jeerapan I, Wang J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 2016;1(5):464–82. https://doi.org/10.1021/acssensors.6b00250 . (PMID: 10.1021/acssensors.6b00250)
      Kim J, Kim M, Lee M-S, Kim K, Ji S, Kim Y-T, Park J, Na K, Bae K-H, Kyun Kim H, Bien F, Young Lee C, Park J-U. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun. 2017;8(1):14997. https://doi.org/10.1038/ncomms14997 . (PMID: 10.1038/ncomms14997284476045414034)
      Kim S-K, Lee G-H, Jeon C, Han HH, Kim S-J, Mok JW, Joo C-K, Shin S, Sim J-Y, Myung D, Bao Z, Hahn SK. Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv Mater. 2022;34(18):2110536. https://doi.org/10.1002/adma.202110536 . (PMID: 10.1002/adma.202110536)
      Bae CW, Toi PT, Kim BY, Lee WI, Lee HB, Hanif A, Lee EH, Lee N-E. Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring. ACS Appl Mater Interfaces. 2019;11(16):14567–75. https://doi.org/10.1021/acsami.9b00848 . (PMID: 10.1021/acsami.9b0084830942999)
      Martin A, Kim J, Kurniawan JF, Sempionatto JR, Moreto JR, Tang G, Campbell AS, Shin A, Shin MY, Liu X, Wang J. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens. 2017;2(12):1860–8. https://doi.org/10.1021/acssensors.7b00729 . (PMID: 10.1021/acssensors.7b0072929152973)
      Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74(15):1061–8. https://doi.org/10.1016/j.bios.2015.07.039 . (PMID: 10.1016/j.bios.2015.07.039262765414718709)
      Korte DL, Kinney J. Personalized medicine: an update of salivary biomarkers for periodontal diseases. Periodontology 2000. 2016;70(1):26-37. https://doi.org/10.1111/prd.12103 .
      Kim KO, Kim GJ, Kim JH. A cellulose/β-cyclodextrin nanofiber patch as a wearable epidermal glucose sensor. RSC Adv. 2019;9(40):22790–4. https://doi.org/10.1039/C9RA03887F . (PMID: 10.1039/C9RA03887F355145079067108)
      Chang T, Li H, Zhang N, Jiang X, Yu X, Yang Q, Jin Z, Meng H, Chang L. Highly integrated watch for noninvasive continual glucose monitoring. Microsyst Nanoeng. 2022;8(1):25. https://doi.org/10.1038/s41378-022-00355-5 . (PMID: 10.1038/s41378-022-00355-5353105148866463)
      Xing X, Yao B, Wu Q, Zhang R, Yao L, Xu J, Gao G, Chen W. Continual and accurate home monitoring of uric acid in urine samples with uricase-packaged nanoflowers assisted portable electrochemical uricometer. Biosens Bioelectron. 2022;198:113804. https://doi.org/10.1016/j.bios.2021.113804 . (PMID: 10.1016/j.bios.2021.11380434864243)
      Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG, Ramírez J, Mercier P, Wang J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139(7):1632–6. https://doi.org/10.1039/C3AN02359A . (PMID: 10.1039/C3AN02359A24496180)
      De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J. Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch. Anal Chem. 2021;93(37):12767–75. https://doi.org/10.1021/acs.analchem.1c02887 . (PMID: 10.1021/acs.analchem.1c0288734477377)
      Li Y, Chen Y. Review of noninvasive continuous glucose monitoring in diabetics. ACS Sens. 2023;8(10):3659–79. https://doi.org/10.1021/acssensors.3c01538 . (PMID: 10.1021/acssensors.3c0153837844284)
      Zhu W, Yu H, Pu Z, Guo Z, Zheng H, Li C, Zhang X, Li J, Li D. Effect of interstitial fluid pH on transdermal glucose extraction by reverse iontophoresis. Biosens Bioelectron. 2023;235:115406. https://doi.org/10.1016/j.bios.2023.115406 . (PMID: 10.1016/j.bios.2023.11540637210841)
      Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: towards integrative, multifunctional and body-compliant perspiration analysis. Sens Actuators, A. 2019;296:200–21. https://doi.org/10.1016/j.sna.2019.07.020 . (PMID: 10.1016/j.sna.2019.07.020)
      Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS, Martin A, Tang G, Shah R, Mishra RK, Kim J, Zucolotto V, Escarpa A, Wang J. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron. 2019;137:161–70. https://doi.org/10.1016/j.bios.2019.04.058 . (PMID: 10.1016/j.bios.2019.04.058310960828372769)
      Jin X, Li G, Xu T, Su L, Yan D, Zhang X. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens Bioelectron. 2022;196:113760. https://doi.org/10.1016/j.bios.2021.113760 . (PMID: 10.1016/j.bios.2021.11376034741953)
      Arana-Peña S, Carballares D, Morellon-Sterling R, Rocha-Martin J, Fernandez-Lafuente R. The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol. 2022;199:51–60. https://doi.org/10.1016/j.ijbiomac.2021.12.148 . (PMID: 10.1016/j.ijbiomac.2021.12.14834973984)
      Shanthi R, Iswarya T, Visuvasam J, Rajendran L, Lyons MEG. Voltammetric and mathematical analysis of adsorption of enzymes at rotating disk electrode. Int J Electrochem Sci. 2022;17(4):220433. https://doi.org/10.20964/2022.04.15 .
      Cao Y, Mo F, Liu Y, Liu Y, Li G, Yu W, Liu X. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter. Biosens Bioelectron. 2022;198:113819. https://doi.org/10.1016/j.bios.2021.113819 . (PMID: 10.1016/j.bios.2021.11381934836711)
      Weng Y, Ranaweera S, Zou D, Cameron AP, Chen X, Song H, Zhao C-X. Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocolloids. 2023;137:108385. https://doi.org/10.1016/j.foodhyd.2022.108385 . (PMID: 10.1016/j.foodhyd.2022.108385)
      Zhao ZP, Zhou MC, Liu RL. Recent developments in carriers and non-aqueous solvents for enzyme immobilization. Catalysts. 2019;9(8):15. https://doi.org/10.3390/catal9080647 . (PMID: 10.3390/catal9080647)
      Kemp E, Palomäki T, Ruuth IA, Boeva ZA, Nurminen TA, Vänskä RT, Zschaechner LK, Pérez AG, Hakala TA, Wardale M, Haeggström E, Bobacka J. Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction. Biosens Bioelectron. 2022;206:114123. https://doi.org/10.1016/j.bios.2022.114123 . (PMID: 10.1016/j.bios.2022.11412335259608)
      Pu Z, Zhang X, Yu H, Tu J, Chen H, Liu Y, Su X, Wang R, Zhang L, Li D. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci Adv. 2021;7(5):eabd0199. https://doi.org/10.1126/sciadv.abd0199 . (PMID: 10.1126/sciadv.abd0199335711177840141)
      Pu Z, Tu J, Han R, Zhang X, Wu J, Fang C, Wu H, Zhang X, Yu H, Li D. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab Chip. 2018;18(23):3570–7. https://doi.org/10.1039/C8LC00908B . (PMID: 10.1039/C8LC00908B30376024)
      Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic biomaterials. Chem Rev. 2022;122(23):17073–154. https://doi.org/10.1021/acs.chemrev.2c00344 . (PMID: 10.1021/acs.chemrev.2c0034436201481)
      Zhang CY, Liu Y, Sun Y, Dong XY. Complicated effects of a zwitterionic polymer containing dimethyl chains on the structures, activities and stabilities of different enzymes. Biochem Eng J. 2021;165(2):107813. https://doi.org/10.1016/j.bej.2020.107813 . (PMID: 10.1016/j.bej.2020.107813)
      Ren J, Liu Y, Wang Z, Chen S, Ma Y, Wei H, Lü S. An anti-swellable hydrogel strain sensor for underwater motion detection. Adv Funct Mater. 2021;32(13):2107404. https://doi.org/10.1002/adfm.202107404 . (PMID: 10.1002/adfm.202107404)
      Pei DF, Yu SY, Zhang XF, Chen YJ, Li MJ, Li CX. Zwitterionic dynamic elastomer with high ionic conductivity for self-adhesive and transparent electronic skin. Chem Eng J. 2022;445:136741. https://doi.org/10.1016/j.cej.2022.136741 . (PMID: 10.1016/j.cej.2022.136741)
      Zhou Y, Fei X, Tian J, Xu L, Li Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J Colloid Interface Sci. 2022;606:192–203. https://doi.org/10.1016/j.jcis.2021.07.158 . (PMID: 10.1016/j.jcis.2021.07.15834388570)
      Mudry B, Guy RH, Delgado-Charro MB. Transport numbers in transdermal iontophoresis. Biophys J. 2006;90(8):2822–30. https://doi.org/10.1529/biophysj.105.074609 . (PMID: 10.1529/biophysj.105.074609164436541414545)
      Jin X, Cai A, Xu T, Zhang X. Artificial intelligence biosensors for continuous glucose monitoring. Interdisciplinary Materials. 2023;2(2):290–307. https://doi.org/10.1002/idm2.12069 . (PMID: 10.1002/idm2.12069)
      Consumi M, Leone G, Pepi S, Pardini A, Lamponi S, Bonechi C, Tamasi G, Rossi C, Magnani A. Calcium ions hyaluronan/gellan gum protective shell for delivery of oleuropein in the knee. Int J Polym Mater Polym Biomater. 2022;71(6):414–24. https://doi.org/10.1080/00914037.2020.1848831 . (PMID: 10.1080/00914037.2020.1848831)
      Patel PK, Mondal MS, Modi S, Behere DV. Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound II. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1997;1339(1):79–87. https://doi.org/10.1016/S0167-4838(96)00219-1.
      Steil GM, Rebrin K, Hariri F, Jinagonda S, Tadros S, Darwin C, Saad MF. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia. 2005;48(9):1833–40. https://doi.org/10.1007/s00125-005-1852-x . (PMID: 10.1007/s00125-005-1852-x16001232)
    • Grant Information:
      82072012 National Natural Science Foundation of China; 82102230 National Natural Science Foundation of China; B07014 111 Project of China; 2022YFB3203700 National Key Research and Development Program of China
    • Contributed Indexing:
      Keywords: Enzyme membrane; Glucose biosensor; Reduced-swelling hydrogel; Zwitterionic hydrogel
    • Accession Number:
      EC 1.1.3.4 (Glucose Oxidase)
      0 (Enzymes, Immobilized)
      IY9XDZ35W2 (Glucose)
      0 (Hydrogels)
      0 (Membranes, Artificial)
      0 (Blood Glucose)
    • Publication Date:
      Date Created: 20240715 Date Completed: 20240817 Latest Revision: 20241015
    • Publication Date:
      20241015
    • Accession Number:
      10.1007/s00216-024-05429-z
    • Accession Number:
      39008068