References: Dinarello CA. Interleukin‐1. Ann. N. Y. Acad. Sci. 1988; 546: 122–132.
Dinarello CA. Immunological and inflammatory functions of the interleukin‐1 family. Annu. Rev. Immunol. 2009; 27: 519–550.
Dinarello CA. Anti‐inflammatory agents: present and future. Cell 2010; 140: 935–950.
Garlanda C, Dinarello CA, Mantovani A. The interleukin‐1 family: back to the future. Immunity 2013; 39: 1003–1018.
Dinarello CA. An expanding role for interleukin‐1 blockade from gout to cancer. Mol. Med. 2014; 20: S43–S58.
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐β. Mol. Cell 2002; 10: 417–426.
Cordero MD, Alcocer‐Gómez E, Ryffel B. Gain of function mutation and inflammasome driven diseases in human and mouse models. J. Autoimmun. 2018; 91: 13–22.
Hajek E, Krebs F, Bent R et al. BRAF inhibitors stimulate inflammasome activation and interleukin 1 beta production in dendritic cells. Oncotarget 2018; 9: 28294–28308.
Garlanda C, Mantovani A. Interleukin‐1 in tumor progression, therapy, and prevention. Cancer Cell 2021; 39: 1023–1027.
Apte RN, Dotan S, Elkabets M et al. The involvement of IL‐1 in tumorigenesis, tumor invasiveness, metastasis and tumor‐host interactions. Cancer Metastasis Rev. 2006; 25: 387–408.
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin‐1 and related cytokines in the regulation of inflammation and immunity. Immunity 2019; 50: 778–795.
Llovet JM, Pinyol R, Kelley RK et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat. Cancer 2022; 3: 386–401.
Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP+CTLA‐4+Foxp3+ T regulatory cells and myeloid‐derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T‐cell functionality. Cancer Res. 2013; 73: 2435–2444.
Lu LC, Chang CJ, Hsu CH. Targeting myeloid‐derived suppressor cells in the treatment of hepatocellular carcinoma: current state and future perspectives. J. Hepatocell Carcinoma 2019; 6: 71–84.
Greten TF, Sangro B. Targets for immunotherapy of liver cancer. J. Hepatol. 2017.
Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005; 1: 7–17.
Du B, Wen X, Wang Y, Lin M, Lai J. Gemcitabine and checkpoint blockade exhibit synergistic anti‐tumor effects in a model of murine lung carcinoma. Int. Immunopharmacol. 2020; 86: 106694.
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int. J. Cancer 2021.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71: 209–249.
Singal AG, Llovet JM, Yarchoan M et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023; 78: 1922–1965.
Finn RS, Qin S, Ikeda M et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020; 382: 1894–1905.
Su B, Luo T, Zhu J et al. Interleukin‐1β/Iinterleukin‐1 receptor‐associated kinase 1 inflammatory signaling contributes to persistent Gankyrin activation during hepatocarcinogenesis. Hepatology 2015; 61: 585–597.
Li N, Jiang J, Fu J et al. Targeting interleukin‐1 receptor‐associated kinase 1 for human hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2016; 35: 140.
Lacotte S, Slits F, Orci LA et al. Impact of myeloid‐derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Onco Targets Ther 2016; 5: e1234565.
Traynor S, Terp MG, Nielsen AY et al. DNA methyltransferase inhibition promotes recruitment of myeloid‐derived suppressor cells to the tumor microenvironment through induction of tumor cell‐intrinsic interleukin‐1. Cancer Lett. 2023; 552: 215982.
Shi H, Qin Y, Tian Y, Wang J, Wang Y, Wang Z, Lv J. Interleukin‐1beta triggers the expansion of circulating granulocytic myeloid‐derived suppressor cell subset dependent on ERK1/2 activation. Immunobiology 2022; 227: 152165.
Najjar YG, Finke JH. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front. Oncol. 2013; 3: 49.
Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr‐1+/CD11b+ myeloid suppressor cells in tumor‐bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 2005; 11: 6713–6721.
Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor‐bearing mice. Int. Immunopharmacol. 2009; 9: 900–909.
Wang H, He X, Fang D, Wang X, Guan J, Shi ZW, Chen X. Gemcitabine‐facilitated modulation of the tumor microenvironment and PD‐1/PD‐L1 blockade generate a synergistic antitumor effect in a murine hepatocellular carcinoma model. Clin. Res. Hepatol. Gastroenterol. 2022; 46: 101853.
Kwong TT, Wong CH, Zhou JY, Cheng ASL, Sung JJY, Chan AWH, Chan SL. Chemotherapy‐induced recruitment of myeloid‐derived suppressor cells abrogates efficacy of immune checkpoint blockade. JHEP Rep. 3. JHEP Rep 2021; 3: 100224.
Wu LL, Wang HY, Chen PJ*. Hydrodynamic HBV Transfection Mouse Model. Methods Mol Biol. 2017; 1540: 227‐235.
No Comments.