An extended interaction site determines binding between AP180 and AP2 in clathrin mediated endocytosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The early phases of clathrin mediated endocytosis are organized through a highly complex interaction network mediated by clathrin associated sorting proteins (CLASPs) that comprise long intrinsically disordered regions (IDRs). AP180 is a CLASP exclusively expressed in neurons and comprises a long IDR of around 600 residues, whose function remains partially elusive. Using NMR spectroscopy, we discovered an extended and strong interaction site within AP180 with the major adaptor protein AP2, and describe its binding dynamics at atomic resolution. We find that the 70 residue-long site determines the overall interaction between AP180 and AP2 in a dynamic equilibrium between its bound and unbound states, while weaker binding sites contribute to the overall affinity at much higher concentrations of AP2. Our data suggest that this particular interaction site might play a central role in recruitment of adaptors to the clathrin coated pit, whereas more transient and promiscuous interactions allow reshaping of the interaction network until cargo uptake inside a coated vesicle.
      (© 2024. The Author(s).)
    • References:
      Bitsikas, V., Corrêa, I. R. Jr & Nichols, B. J. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3, e03970 (2014). (PMID: 25232658418542210.7554/eLife.03970)
      Paraan, M. et al. The structures of natively assembled clathrin-coated vesicles. Sci. Adv. 6, eaba8397 (2020). (PMID: 32743076737581910.1126/sciadv.aba8397)
      Taylor, M. J., Perrais, D. & Merrifield, C. J. A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis. PLOS Biol. 9, e1000604 (2011). (PMID: 21445324306252610.1371/journal.pbio.1000604)
      Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular Architecture and Functional Model of the Endocytic AP2 Complex. Cell 109, 523–535 (2002). (PMID: 1208660810.1016/S0092-8674(02)00735-3)
      Praefcke, G. J. K. et al. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004). (PMID: 1549698552646210.1038/sj.emboj.7600445)
      Schmid, E. M. et al. Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, e262 (2006). (PMID: 16903783154070610.1371/journal.pbio.0040262)
      Maldonado-Báez, L. & Wendland, B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol. 16, 505–513 (2006). (PMID: 1693550810.1016/j.tcb.2006.08.001)
      Takei, K. & Haucke, V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 11, 385–391 (2001). (PMID: 1151419310.1016/S0962-8924(01)02082-7)
      Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018). (PMID: 2941053110.1038/nrm.2017.132)
      Ford, M. G. J. et al. Simultaneous Binding of PtdIns(4,5)P2 and Clathrin by AP180 in the Nucleation of Clathrin Lattices on Membranes. Science 291, 1051–1055 (2001). (PMID: 1116121810.1126/science.291.5506.1051)
      Koo, S. J. et al. SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc. Natl Acad. Sci. USA 108, 13540–13545 (2011). (PMID: 21808019315817210.1073/pnas.1107067108)
      Maritzen, T., Koo, S. J. & Haucke, V. Turning CALM into excitement: AP180 and CALM in endocytosis and disease. Biol. Cell 104, 588–602 (2012). (PMID: 2263991810.1111/boc.201200008)
      Koo, S. J. et al. Vesicular Synaptobrevin/VAMP2 Levels Guarded by AP180 Control Efficient Neurotransmission. Neuron 88, 330–344 (2015). (PMID: 2641249110.1016/j.neuron.2015.08.034)
      Morgan, J. R., Prasad, K., Hao, W., Augustine, G. J. & Lafer, E. M. A Conserved Clathrin Assembly Motif Essential for Synaptic Vesicle Endocytosis. J. Neurosci. 20, 8667–8676 (2000). (PMID: 11102472677305610.1523/JNEUROSCI.20-23-08667.2000)
      Zhuo, Y. et al. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain. Biochemistry 54, 2571–2580 (2015). (PMID: 2584450010.1021/acs.biochem.5b00065)
      Hao, W., Luo, Z., Zheng, L., Prasad, K. & Lafer, E. M. AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J. Biol. Chem. 274, 22785–22794 (1999). (PMID: 1042886310.1074/jbc.274.32.22785)
      Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010). (PMID: 20160082284016210.1073/pnas.0911073107)
      Brett, T. J., Traub, L. M. & Fremont, D. H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002). (PMID: 1205719510.1016/S0969-2126(02)00784-0)
      Erdős, G. & Dosztányi, Z. Analyzing Protein Disorder with IUPred2A. Curr. Protoc. Bioinforma. 70, e99 (2020). (PMID: 10.1002/cpbi.99)
      Moshkanbaryans, L., Chan, L.-S. & Graham, M. E. The Biochemical Properties and Functions of CALM and AP180 in Clathrin Mediated Endocytosis. Membranes 4, 388–413 (2014). (PMID: 25090048419404110.3390/membranes4030388)
      Smith, S. M., Baker, M., Halebian, M. & Smith, C. J. Weak Molecular Interactions in Clathrin-Mediated Endocytosis. Front. Mol. Biosci. 4, 72 (2017).
      Zhang, H., Neal, S. & Wishart, D. S. RefDB: a database of uniformly referenced protein chemical shifts. J. Biomol. NMR 25, 173–195 (2003). (PMID: 1265213110.1023/A:1022836027055)
      Marsh, J. A., Singh, V. K., Jia, Z. & Forman-Kay, J. D. Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: Implications for fibrillation. Protein Sci. 15, 2795–2804 (2006). (PMID: 17088319224244410.1110/ps.062465306)
      Zhuo, Y. et al. Dynamic Interactions between Clathrin and Locally Structured Elements in a Disordered Protein Mediate Clathrin Lattice Assembly. J. Mol. Biol. 404, 274–290 (2010). (PMID: 20875424298164410.1016/j.jmb.2010.09.044)
      Milles, S. et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163, 734–745 (2015). (PMID: 26456112462293610.1016/j.cell.2015.09.047)
      Wang, L.-H., Südhof, T. C. & Anderson, R. G. W. The Appendage Domain of α-Adaptin Is a High Affinity Binding Site for Dynamin (∗). J. Biol. Chem. 270, 10079–10083 (1995). (PMID: 773031110.1074/jbc.270.17.10079)
      Kumar, M. et al. ELM-the Eukaryotic Linear Motif resource-2024 update. Nucleic Acids Res 52, D442–D455 (2024). (PMID: 3796238510.1093/nar/gkad1058)
      Edeling, M. A. et al. Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006). (PMID: 1651683610.1016/j.devcel.2006.01.016)
      Zaccai, N. R. et al. FCHO controls AP2’s initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch. Sci. Adv. 8, eabn2018 (2022). (PMID: 35486718905401310.1126/sciadv.abn2018)
      Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 1–25, https://doi.org/10.1038/s41580-023-00673-0 (2023).
      van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014). (PMID: 24773235409591210.1021/cr400525m)
      Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005). (PMID: 1573898610.1038/nrm1589)
      Van Roey, K. et al. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 114, 6733–6778 (2014). (PMID: 2492681310.1021/cr400585q)
      Cermakova, K. & Hodges, H. C. Interaction modules that impart specificity to disordered protein. Trends Biochemical Sci. 48, 477–490 (2023). (PMID: 10.1016/j.tibs.2023.01.004)
      Fung, H. Y. J., Birol, M. & Rhoades, E. IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Struct. Biol. 49, 36–43 (2018). (PMID: 29306779591596710.1016/j.sbi.2017.12.007)
      Sipko, E. L., Chappell, G. F. & Berlow, R. B. Multivalency emerges as a common feature of intrinsically disordered protein interactions. Curr. Opin. Struct. Biol. 84, 102742 (2024). (PMID: 3809675410.1016/j.sbi.2023.102742)
      Mittag, T. et al. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl Acad. Sci. USA 105, 17772–17777 (2008). (PMID: 19008353258294010.1073/pnas.0809222105)
      Elias, R. D. et al. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc. Natl Acad. Sci. USA 117, 24274–24284 (2020). (PMID: 32917811753388710.1073/pnas.2010635117)
      Day, K. J. et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat. Cell Biol. 23, 366–376 (2021). (PMID: 33820972803523110.1038/s41556-021-00646-5)
      Kozak, M. & Kaksonen, M. Condensation of Ede1 promotes the initiation of endocytosis. Elife 11, e72865 (2022). (PMID: 35412456906429410.7554/eLife.72865)
      Yuan, F. et al. Ubiquitin-driven protein condensation promotes clathrin-mediated endocytosis. Preprint at https://doi.org/10.1101/2023.08.21.554139 (2023).
      Rumpf, J. et al. Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity. EMBO J. 27, 558–569 (2008). (PMID: 18200045224165210.1038/sj.emboj.7601980)
      Bugge, K. et al. Interactions by Disorder - A Matter of Context. Front. Mol. Biosci. 7, 110 (2020). (PMID: 32613009730872410.3389/fmolb.2020.00110)
      Moshkanbaryans, L., Xue, J., Wark, J. R., Robinson, P. J. & Graham, M. E. A Novel Sequence in AP180 and CALM Promotes Efficient Clathrin Binding and Assembly. PLoS One 11, e0162050 (2016). (PMID: 27574975500486110.1371/journal.pone.0162050)
      Norris, F. A., Ungewickell, E. & Majerus, P. W. Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro. J. Biol. Chem. 270, 214–217 (1995). (PMID: 781437710.1074/jbc.270.1.214)
      Wood, L. A., Larocque, G., Clarke, N. I., Sarkar, S. & Royle, S. J. New tools for ‘hot-wiring’ clathrin-mediated endocytosis with temporal and spatial precision. J. Cell Biol. 216, 4351–4365 (2017). (PMID: 28954824571627510.1083/jcb.201702188)
      Solyom, Z. et al. BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J. Biomol. NMR 55, 311–321 (2013). (PMID: 2343557610.1007/s10858-013-9715-0)
      Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995). (PMID: 852022010.1007/BF00197809)
      Jung, Y.-S. & Zweckstetter, M. Mars - robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23 (2004). (PMID: 1545243110.1023/B:JNMR.0000042954.99056.ad)
      Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015). (PMID: 2550509210.1093/bioinformatics/btu830)
      Kazimierczuk, K. & Orekhov, V. Yu. Accelerated NMR Spectroscopy by Using Compressed Sensing. Angew. Chem. Int. Ed. 50, 5556–5559 (2011). (PMID: 10.1002/anie.201100370)
      Skinner, S. P. et al. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J. Biomol. NMR 66, 111–124 (2016). (PMID: 27663422509515910.1007/s10858-016-0060-y)
      Lakomek, N.-A., Ying, J. & Bax, A. Measurement of 15 N relaxation rates in perdeuterated proteins by TROSY-based methods. J. Biomol. NMR 53, 209–221 (2012). (PMID: 22689066341268810.1007/s10858-012-9626-5)
      Guseva, S. et al. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci. Adv. 6, eaaz7095 (2020). (PMID: 32270045711294410.1126/sciadv.aaz7095)
    • Grant Information:
      802209 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); ANR-17-ERC3-0004 Agence Nationale de la Recherche (French National Research Agency); ANR-15-IDEX-02 Agence Nationale de la Recherche (French National Research Agency); ANR-10-INBS-0005- 02 Agence Nationale de la Recherche (French National Research Agency)
    • Accession Number:
      0 (Adaptor Protein Complex 2)
      0 (Clathrin)
      0 (clathrin assembly protein AP180)
      0 (Monomeric Clathrin Assembly Proteins)
      0 (Intrinsically Disordered Proteins)
    • Publication Date:
      Date Created: 20240713 Date Completed: 20240713 Latest Revision: 20240731
    • Publication Date:
      20240731
    • Accession Number:
      PMC11246429
    • Accession Number:
      10.1038/s41467-024-50212-4
    • Accession Number:
      39003270