Dramatic loss of microbial viability in bentonite exposed to heat and gamma radiation: implications for deep geological repository.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m - 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h - 1 ) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.
      (© 2024. The Author(s).)
    • References:
      Microb Biotechnol. 2021 May;14(3):810-828. (PMID: 33615734)
      PLoS One. 2012;7(11):e48558. (PMID: 23139793)
      Front Microbiol. 2022 Oct 21;13:968220. (PMID: 36338040)
      Microbiome. 2018 Dec 17;6(1):226. (PMID: 30558668)
      Environ Sci Technol. 2019 Sep 3;53(17):10514-10524. (PMID: 31369249)
      Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
      Chemosphere. 2017 Oct;184:1157-1167. (PMID: 28672697)
      Int J Biochem Cell Biol. 2004 Nov;36(11):2334-43. (PMID: 15313477)
      PLoS Biol. 2007 Apr;5(4):e92. (PMID: 17373858)
      J Hazard Mater. 2014 May 15;272:10-9. (PMID: 24662270)
      FEMS Microbiol Rev. 1997 Jul;20(3-4):573-90. (PMID: 9299719)
      J Hazard Mater. 2024 Mar 5;465:133318. (PMID: 38154187)
      Int J Syst Evol Microbiol. 2017 Jul;67(7):2332-2336. (PMID: 28777069)
      Front Microbiol. 2022 Apr 25;13:858324. (PMID: 35547138)
      FEMS Microbiol Rev. 2005 Apr;29(2):361-75. (PMID: 15808748)
      Science. 2004 Feb 6;303(5659):830-2. (PMID: 14764877)
      Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
      Sci Rep. 2021 Nov 16;11(1):22349. (PMID: 34785699)
      Microbiol Mol Biol Rev. 2000 Sep;64(3):548-72. (PMID: 10974126)
      PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
      Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14373-7. (PMID: 20660760)
      FEMS Microbiol Rev. 2024 Jan 12;48(1):. (PMID: 38216518)
      Int J Syst Evol Microbiol. 2006 Apr;56(Pt 4):721-725. (PMID: 16585683)
      mSphere. 2019 Dec 18;4(6):. (PMID: 31852805)
      Nucleic Acids Res. 2010 Dec;38(22):e200. (PMID: 20880993)
      Sci Total Environ. 2022 Feb 20;808:151861. (PMID: 34838551)
      Appl Environ Microbiol. 2015 Jun 15;81(12):4014-25. (PMID: 25841009)
      Sci Total Environ. 2024 Mar 10;915:170149. (PMID: 38242445)
      BMC Microbiol. 2008 Jul 24;8:125. (PMID: 18652685)
      J Appl Microbiol. 2010 Mar;108(3):1094-1104. (PMID: 20015208)
      Sci Total Environ. 2021 Dec 15;800:149539. (PMID: 34392220)
      Extremophiles. 2023 Oct 15;27(3):27. (PMID: 37839067)
      Appl Environ Microbiol. 2014 Feb;80(4):1226-36. (PMID: 24317078)
      Sci Total Environ. 2022 Mar 25;814:152660. (PMID: 34958843)
      J Bacteriol. 1996 Feb;178(3):633-7. (PMID: 8550493)
      Antioxid Redox Signal. 2014 Jul 10;21(2):260-92. (PMID: 24382094)
      Microorganisms. 2022 Feb 16;10(2):. (PMID: 35208907)
      Prikl Biokhim Mikrobiol. 2010 Jan-Feb;46(1):5-20. (PMID: 20198911)
      World J Microbiol Biotechnol. 2023 Dec 10;40(1):41. (PMID: 38071262)
      Microbiome. 2018 May 17;6(1):90. (PMID: 29773078)
      Science. 2003 Aug 15;301(5635):934. (PMID: 12920290)
      Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
      J Hazard Mater. 2023 Mar 5;445:130557. (PMID: 36502723)
      Front Microbiol. 2019 Feb 13;10:204. (PMID: 30814985)
    • Contributed Indexing:
      Keywords: Bentonite buffer; Deep geological repository; Elevated temperature; Extremophiles; Gamma radiation; Microbial limiting factors; Radioactive waste disposal
    • Accession Number:
      1302-78-9 (Bentonite)
      0 (Radioactive Waste)
    • Publication Date:
      Date Created: 20240711 Date Completed: 20240711 Latest Revision: 20240812
    • Publication Date:
      20240813
    • Accession Number:
      PMC11239606
    • Accession Number:
      10.1007/s11274-024-04069-w
    • Accession Number:
      38990244