Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A de novo ARIH2 gene mutation was detected in a patient with autism spectrum disorders and intellectual disability.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Vinci M;Vinci M; Treccarichi S; Treccarichi S; Galati Rando R; Galati Rando R; Musumeci A; Musumeci A; Todaro V; Todaro V; Federico C; Federico C; Saccone S; Saccone S; Elia M; Elia M; Calì F; Calì F
- Source:
Scientific reports [Sci Rep] 2024 Jul 09; Vol. 14 (1), pp. 15848. Date of Electronic Publication: 2024 Jul 09.- Publication Type:
Journal Article; Case Reports- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- Publication Information: Original Publication: London : Nature Publishing Group, copyright 2011-
- Subject Terms:
- Abstract: E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.
(© 2024. The Author(s).) - References: An, J.-Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science https://doi.org/10.1126/science.aat6576 (2018). (PMID: 10.1126/science.aat6576305458526432922)
Dhaene, E. & Vergult, S. Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genetics in Medicine 23, 34–46 (2021). (PMID: 3297335510.1038/s41436-020-00974-1)
Li, K. et al. Prioritizing de novo potential non-canonical splicing variants in neurodevelopmental disorders. EBioMedicine 99, 104928 (2024). (PMID: 3811376110.1016/j.ebiom.2023.104928)
Manoubi, W. et al. Genetic investigation of the ubiquitin-protein ligase E3A gene as putative target in Angelman syndrome. World J. Clin. Cases 12, 503–516 (2024). (PMID: 383224711084194110.12998/wjcc.v12.i3.503)
Turner, C. M. et al. Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol. Dial. Transplant. 22, 386–395 (2006). (PMID: 1704099710.1093/ndt/gfl589)
Pagnamenta, A. T. et al. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med. 15, 94 (2023). (PMID: 379462511063688510.1186/s13073-023-01240-0)
Schmidt, M. F., Gan, Z. Y., Komander, D. & Dewson, G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 28, 570–590 (2021). (PMID: 33414510786224910.1038/s41418-020-00706-7)
Ullah, K., Zubia, E., Narayan, M., Yang, J. & Xu, G. Diverse roles of the E2/E3 hybrid enzymeUBE 2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J. 286, 2018–2034 (2019). (PMID: 3046855610.1111/febs.14708)
Kasherman, M. A., Premarathne, S., Burne, T. H. J., Wood, S. A. & Piper, M. The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol. Neurobiol. 57, 2179–2193 (2020). (PMID: 3197494110.1007/s12035-020-01881-x)
Martínez-Noël, G. et al. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J. Mol. Biol. 430, 1024–1050 (2018). (PMID: 29426014586679010.1016/j.jmb.2018.01.021)
Toma-Fukai, S. & Shimizu, T. Structural Diversity of Ubiquitin E3 Ligase. Molecules 26, 6682 (2021). (PMID: 34771091858699510.3390/molecules26216682)
Crider, A., Pandya, C. D., Peter, D., Ahmed, A. O. & Pillai, A. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder. Mol. Autism. 5, 45 (2014). (PMID: 25392730422882110.1186/2040-2392-5-45)
George, A. J., Hoffiz, Y. C., Charles, A. J., Zhu, Y. & Mabb, A. M. A Comprehensive Atlas of E3 Ubiquitin Ligase Mutations in Neurological Disorders. Front. Genet. https://doi.org/10.3389/fgene.2018.00029 (2018). (PMID: 10.3389/fgene.2018.00029300230016039760)
Kumar, D., Ambasta, R. K. & Kumar, P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res. Rev. 61, 101078 (2020). (PMID: 3240795110.1016/j.arr.2020.101078)
Zajicek, A. & Yao, W.-D. Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol. Psychiatry 26, 247–264 (2021). (PMID: 3270999410.1038/s41380-020-0849-7)
Tang, G. et al. Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron 83, 1131–1143 (2014). (PMID: 25155956415974310.1016/j.neuron.2014.07.040)
Upadhyay, A. et al. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol. Neurosci. https://doi.org/10.3389/fnmol.2017.00151 (2017). (PMID: 10.3389/fnmol.2017.00151285799435437216)
Ardley, H. C. & Robinson, P. A. The Role of Ubiquitin-Protein Ligases in Neurodegenerative Disease. Neurodegener. Dis. 1, 71–87 (2004). (PMID: 1690897910.1159/000080048)
Hampe, C., Ardila-Osorio, H., Fournier, M., Brice, A. & Corti, O. Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin–protein ligase with monoubiquitylation capacity. Hum. Mol. Genet. 15, 2059–2075 (2006). (PMID: 1671430010.1093/hmg/ddl131)
Conway, J. A., Kinsman, G. & Kramer, E. R. The Role of NEDD4 E3 Ubiquitin-Protein Ligases in Parkinson’s Disease. Genes (Basel) 13, 513 (2022). (PMID: 3532806710.3390/genes13030513)
Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell. Biol. 17, 626–642 (2016). (PMID: 2748589910.1038/nrm.2016.91)
Zhang, Y. & Hou, L. Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int. J. Mol. Sci. 22, 5949 (2021). (PMID: 34073089819869210.3390/ijms22115949)
Scott, D. C. et al. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell 166, 1198-1214.e24 (2016). (PMID: 27565346509166810.1016/j.cell.2016.07.027)
Kawashima, A. et al. ARIH2 Ubiquitinates NLRP3 and Negatively Regulates NLRP3 Inflammasome Activation in Macrophages. J. Immunol. 199, 3614–3622 (2017). (PMID: 2902137610.4049/jimmunol.1700184)
Lamsoul, I., Uttenweiler-Joseph, S., Moog-Lutz, C. & Lutz, P. G. Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets?. Biochimie 122, 339–347 (2016). (PMID: 2625369310.1016/j.biochi.2015.08.003)
Kostrhon, S. et al. CUL5-ARIH2 E3–E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nat. Chem. Biol. 17, 1075–1083 (2021). (PMID: 34518685846044710.1038/s41589-021-00858-8)
Lin, A. E. et al. ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system. Nat. Immunol. 14, 27–33 (2013). (PMID: 2317907810.1038/ni.2478)
Lv, B., Zhang, X.-O. & Pazour, G. J. Arih2 regulates Hedgehog signaling through smoothened ubiquitylation and ER-associated degradation. J. Cell Sci. https://doi.org/10.1242/jcs.260299 (2022). (PMID: 10.1242/jcs.260299358995299481925)
Marteijn, J. A. F. et al. The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. Blood 106, 4114–4123 (2005). (PMID: 1611831410.1182/blood-2005-04-1450)
Hampson, D. R. & Blatt, G. J. Autism spectrum disorders and neuropathology of the cerebellum. Front. Neurosci. https://doi.org/10.3389/fnins.2015.00420 (2015). (PMID: 10.3389/fnins.2015.00420265941414635214)
D’Mello, A. M. & Stoodley, C. J. Cerebro-cerebellar circuits in autism spectrum disorder. Front. Neurosci. https://doi.org/10.3389/fnins.2015.00408 (2015). (PMID: 10.3389/fnins.2015.00408265941404633503)
Prat, C. S., Stocco, A., Neuhaus, E. & Kleinhans, N. M. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex. Neuropsychologia 91, 268–281 (2016). (PMID: 27542318645358010.1016/j.neuropsychologia.2016.08.007)
von Stechow, L. et al. The E3 Ubiquitin Ligase ARIH1 Protects against Genotoxic Stress by Initiating a 4EHP-Mediated mRNA Translation Arrest. Mol. Cell. Biol. 35, 1254–1268 (2015). (PMID: 10.1128/MCB.01152-14)
Aguilera, M., Oliveros, M., Martínez-Padrón, M., Barbas, J. A. & Ferrús, A. Ariadne-1: A Vital Drosophila Gene Is Required in Development and Defines a New Conserved Family of RING-Finger Proteins. Genetics 155, 1231–1244 (2000). (PMID: 10880484146116010.1093/genetics/155.3.1231)
Elmehdawi, F. et al. Human Homolog of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies. Exp. Cell. Res. 319, 161–172 (2013). (PMID: 2305936910.1016/j.yexcr.2012.10.002)
Duda, D. M. et al. Structure of HHARI, a RING-IBR-RING Ubiquitin Ligase: Autoinhibition of an Ariadne-Family E3 and Insights into Ligation Mechanism. Structure 21, 1030–1041 (2013). (PMID: 23707686374781810.1016/j.str.2013.04.019)
Greer, P. L. et al. The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc. Cell 140, 704–716 (2010). (PMID: 20211139284314310.1016/j.cell.2010.01.026)
Vatsa, N. & Jana, N. R. UBE3A and Its Link With Autism. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2018.00448 (2018). (PMID: 10.3389/fnmol.2018.00448305685756290346)
Furlong, R. Refining the splice region. Nat. Rev. Genet. 19, 470–471 (2018). (PMID: 2992186710.1038/s41576-018-0028-8)
Longo, F. & Klann, E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep. https://doi.org/10.15252/embr.202052110 (2021). (PMID: 10.15252/embr.202052110339776338183409)
Moynihan, T. P. et al. The Ubiquitin-conjugating Enzymes UbcH7 and UbcH8 Interact with RING Finger/IBR Motif-containing Domains of HHARI and H7-AP1. J. Biol. Chem. 274, 30963–30968 (1999). (PMID: 1052149210.1074/jbc.274.43.30963)
Eisenhaber, B., Chumak, N., Eisenhaber, F. & Hauser, M.-T. The ring between ring fingers (RBR) protein family. Genome Biol. 8, 209 (2007). (PMID: 17367545186894610.1186/gb-2007-8-3-209)
Dove, K. K. et al. Structural Studies of HHARI/UbcH7∼Ub Reveal Unique E2∼Ub Conformational Restriction by RBR RING1. Structure 25, 890-900.e5 (2017). (PMID: 28552575546253210.1016/j.str.2017.04.013)
Margolis, S. S. et al. EphB-mediated degradation of the RhoA GEF ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143, 442–455 (2010). (PMID: 21029865296720910.1016/j.cell.2010.09.038)
Sun, J. et al. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis. Cell. Rep. 12, 449–461 (2015). (PMID: 26166566452070310.1016/j.celrep.2015.06.023)
Giles, A. C. & Grill, B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev. 15, 6 (2020). (PMID: 32336296718471610.1186/s13064-020-00143-9)
Nordahl, C. W. Increased Rate of Amygdala Growth in Children Aged 2 to 4 Years With Autism Spectrum Disorders. Arch. Gen. Psychiatry 69, 53 (2012). (PMID: 22213789363231310.1001/archgenpsychiatry.2011.145)
Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016). (PMID: 27919067710290510.1038/nature20612)
Matoba, N. et al. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl. Psychiatry 10, 265 (2020). (PMID: 32747698740067110.1038/s41398-020-00953-9)
Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022). (PMID: 35982160965301310.1038/s41588-022-01104-0)
Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021). (PMID: 33442040781035210.1038/s41586-020-03078-7)
Tallantyre, E. & Robertson, N. P. Autism and intellectual disability. J. Neurol. 260, 936–939 (2013). (PMID: 2342324510.1007/s00415-013-6861-y)
Li, M., Zhang, W. & Zhou, X. Identification of genes involved in the evolution of human intelligence through combination of inter-species and intra-species genetic variations. PeerJ 8, e8912 (2020). (PMID: 32337102716724610.7717/peerj.8912)
Simó, S., Jossin, Y. & Cooper, J. A. Cullin 5 Regulates Cortical Layering by Modulating the Speed and Duration of Dab1-Dependent Neuronal Migration. J. Neurosci. 30, 5668–5676 (2010). (PMID: 20410119286664110.1523/JNEUROSCI.0035-10.2010)
Scudder, S. L. & Patrick, G. N. Synaptic structure and function are altered by the neddylation inhibitor MLN4924. Mol. Cell. Neurosci. 65, 52–57 (2015). (PMID: 25701678484406610.1016/j.mcn.2015.02.010)
Nakamura, T. et al. Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk. Cell. Genom. 4, 100488 (2024). (PMID: 382803811087903610.1016/j.xgen.2024.100488)
Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020). (PMID: 32423490723630010.1186/s13073-020-00742-5)
Vinci, M. et al. Exome sequencing in a child with neurodevelopmental disorder and epilepsy: Variant analysis of the AHNAK2 gene. Mol. Genet. Genomic Med. https://doi.org/10.1002/mgg3.2012 (2022). (PMID: 10.1002/mgg3.2012357891289482394)
Abbasi, A. & Alexandrov, L. B. Significance and limitations of the use of next-generation sequencing technologies for detecting mutational signatures. DNA Repair 107, 103200 (2021). (PMID: 34411908947856510.1016/j.dnarep.2021.103200)
Tilemis, F.-N. et al. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes 14, 1490 (2023). (PMID: 375103941037958910.3390/genes14071490)
Chen, C., Qin, H., Tan, J., Hu, Z. & Zeng, L. The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. Oxid. Med. Cell. Longev. 2020, 1–12 (2020).
Zhang, L. et al. Dexmedetomidine Mitigated NLRP3-Mediated Neuroinflammation via the Ubiquitin-Autophagy Pathway to Improve Perioperative Neurocognitive Disorder in Mice. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.646265 (2021). (PMID: 10.3389/fphar.2021.646265357573878758560)
Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253 (2014). (PMID: 2537592810.1038/nm.3739)
Lahiri, D. K., Bye, S., Nurnberger, J. I., Hodes, M. E. & Crisp, M. A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J. Biochem. Biophys. Methods 25, 193–205 (1992). (PMID: 149403210.1016/0165-022X(92)90014-2)
Chang, X. & Wang, K. wANNOVAR: annotating genetic variants for personal genomes via the web. J. Med. Genet. 49, 433–436 (2012). (PMID: 2271764810.1136/jmedgenet-2012-100918)
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). (PMID: 2251742710.1093/bib/bbs017)
Calì, F. et al. DXYS156: a multi-purpose short tandem repeat locus for determination of sex, paternal and maternal geographic origins and DNA fingerprinting. Int. J. Legal Med. 116, 133–138 (2002). (PMID: 1211131510.1007/s00414-001-0272-9)
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). (PMID: 25741868454475310.1038/gim.2015.30)
Kopanos, C. et al. VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019). (PMID: 3037603410.1093/bioinformatics/bty897)
Shihab, H. A. et al. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models. Hum. Mutat. 34, 57–65 (2013). (PMID: 2303331610.1002/humu.22225)
Lin, H. et al. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biol. 20, 254 (2019). (PMID: 31779641688369610.1186/s13059-019-1847-4)
Pontén, F., Schwenk, J. M., Asplund, A. & Edqvist, P.-H.D. The Human Protein Atlas as a proteomic resource for biomarker discovery. J. Intern. Med. 270, 428–446 (2011). (PMID: 2175211110.1111/j.1365-2796.2011.02427.x)
Wang, M. & Marín, A. Characterization and prediction of alternative splice sites. Gene 366, 219–227 (2006). (PMID: 1622640210.1016/j.gene.2005.07.015)
Tang, R., Prosser, D. O. & Love, D. R. Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv. Bioinform. 2016, 1–10 (2016). (PMID: 10.1155/2016/5614058)
Scalzitti, N. et al. Spliceator: multi-species splice site prediction using convolutional neural networks. BMC Bioinform. 22, 561 (2021). (PMID: 10.1186/s12859-021-04471-3)
Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010). (PMID: 19858363279882310.1101/gr.097857.109)
Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010). (PMID: 2067607510.1038/nmeth0810-575)
Montenegro, L. R., Lerário, A. M., Nishi, M. Y., Jorge, A. A. L. & Mendonca, B. B. Performance of mutation pathogenicity prediction tools on missense variants associated with 46 XY differences of sex development. Clinics 76, e2052 (2021). (PMID: 33503178781183510.6061/clinics/2021/e2052)
Frías-López, C. et al. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms. Bioinformatics 32, 3753–3759 (2016). (PMID: 2753110410.1093/bioinformatics/btw534)
Quinodoz, M. et al. DOMINO: Using Machine Learning to Predict Genes Associated with Dominant Disorders. Am. J. Hum. Genet. 101, 623–629 (2017). (PMID: 28985496563019510.1016/j.ajhg.2017.09.001)
Stenson, P. D. et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020). (PMID: 32596782749728910.1007/s00439-020-02199-3)
Crosara, K. T. B., Moffa, E. B., Xiao, Y. & Siqueira, W. L. Merging in-silico and in vitro salivary protein complex partners using the STRING database: A tutorial. J. Proteomics 171, 87–94 (2018). (PMID: 2878271810.1016/j.jprot.2017.08.002)
Meng, E. C. et al. UCSF ChimeraX : Tools for structure building and analysis. Protein Sci. https://doi.org/10.1002/pro.4792 (2023). (PMID: 10.1002/pro.47923777413610588335) - Contributed Indexing: Keywords: Autism spectrum disorder; Autosomal dominant inheritance model; E3 ubiquitin-protein ligase; Splicing region; Ubiquitination; Whole exome sequencing
- Accession Number: EC 2.3.2.27 (Ubiquitin-Protein Ligases)
- Publication Date: Date Created: 20240709 Date Completed: 20240709 Latest Revision: 20240805
- Publication Date: 20240805
- Accession Number: PMC11233510
- Accession Number: 10.1038/s41598-024-66475-2
- Accession Number: 38982159
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.