Icariside II in NSCLC and COVID-19: Network pharmacology and molecular docking study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9815764 Publication Model: Print Cited Medium: Internet ISSN: 1521-2254 (Electronic) Linking ISSN: 1099498X NLM ISO Abbreviation: J Gene Med Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chichester, UK : John Wiley & Sons,
    • Subject Terms:
    • Abstract:
      Background: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19).
      Methods: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking.
      Results: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19.
      Conclusions: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS‐CoV‐2 and COVID‐19. Nat Rev Microbiol. 2021;19(3):141‐154. doi:10.1038/s41579‐020‐00459‐7.
      Yu J, Ouyang W, Chua MLK, Xie C. SARS‐CoV‐2 transmission in patients with cancer at a tertiary Care Hospital in Wuhan, China. JAMA Oncol. 2020;6(7):1108‐1110. doi:10.1001/jamaoncol.2020.0980.
      Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS‐CoV‐2: a multicenter study during the COVID‐19 outbreak. Cancer Discov. 2020;10(6):783‐791. doi:10.1158/2159‐8290.CD‐20‐0422.
      Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID‐19 on patients with cancer (CCC19): a cohort study. Lancet (London, England). 2020;395(10241):1907‐1918. doi:10.1016/S0140‐6736(20)31187‐9.
      Pinato DJ, Tabernero J, Bower M, et al. Prevalence and impact of COVID‐19 sequelae on treatment and survival of patients with cancer who recovered from SARS‐CoV‐2 infection: evidence from the OnCovid retrospective, multicentre registry study. Lancet Oncol. 2021;22(12):1669‐1680. doi:10.1016/S1470‐2045(21)00573‐8.
      Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID‐19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033‐1034. doi:10.1016/S0140‐6736(20)30628‐0.
      Yu R, Zhou Y, Shi S, Wang X, Huang S, Ren Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR‐324‐3p/GPX4 axis. Phytomedicine. 2022;102:154182. doi:10.1016/j.phymed.2022.154182.
      Yang C, Jin YY, Mei J, et al. Identification of icaritin derivative IC2 as an SCD‐1 inhibitor with anti‐breast cancer properties through induction of cell apoptosis. Cancer Cell Int. 2022;22(1):202. doi:10.1186/s12935‐022‐02621‐y.
      Chen Y, Zhang L, Zang X, Shen X, Li J, Chen L. Baohuoside I inhibits tumor angiogenesis in multiple myeloma via the peroxisome proliferator‐activated receptor gamma/vascular endothelial growth factor signaling pathway. Front Pharmacol. 2022;13:822082. doi:10.3389/fphar.2022.822082.
      Wang Q, Jiang S, Wang W, Jiang H. Effects of baohuoside‐I on epithelial‐mesenchymal transition and metastasis in nasopharyngeal carcinoma. Hum Exp Toxicol. 2021;40(4):566‐576. doi:10.1177/0960327120960765.
      Wang S, Wang N, Huang X, et al. Baohuoside i suppresses breast cancer metastasis by downregulating the tumor‐associated macrophages/C‐X‐C motif chemokine ligand 1 pathway. Phytomedicine. 2020;78:153331. doi:10.1016/j.phymed.2020.153331.
      Sun YS, Thakur K, Hu F, Zhang JG, Wei ZJ. Icariside II inhibits tumorigenesis via inhibiting AKT/cyclin E/CDK 2 pathway and activating mitochondria‐dependent pathway. Pharmacol Res. 2020;152:104616. doi:10.1016/j.phrs.2019.104616.
      Sun YS, Thakur K, Hu F, Cespedes‐Acuña CL, Zhang JG, Wei ZJ. Icariside II suppresses cervical cancer cell migration through JNK modulated matrix metalloproteinase‐2/9 inhibition in vitro and in vivo. Biomed Pharmacother. 2020;125:110013. doi:10.1016/j.biopha.2020.110013.
      Kong Q, Ma M, Zhang L, et al. Icariside II potentiates the anti‐PD‐1 antitumor effect by reducing chemotactic infiltration of myeloid‐derived suppressor cells into the tumor microenvironment via ROS‐mediated inactivation of the SRC/ERK/STAT3 signaling pathways. Phytomedicine. 2023;110:154638. doi:10.1016/j.phymed.2022.154638.
      Wu J, Guan M, Wong PF, Yu H, Dong J, Xu J. Icariside II potentiates paclitaxel‐induced apoptosis in human melanoma A375 cells by inhibiting TLR4 signaling pathway. Food Chem Toxicol. 2012;50(9):3019‐3024. doi:10.1016/j.fct.2012.06.027.
      du J, Wu J, Fu X, et al. Icariside II overcomes TRAIL resistance of melanoma cells through ROS‐mediated downregulation of STAT3/cFLIP signaling. Oncotarget. 2016;7(32):52218‐52229. doi:10.18632/oncotarget.10582.
      Tang Z, du W, Xu F, et al. Icariside II enhances cisplatin‐induced apoptosis by promoting endoplasmic reticulum stress signalling in non‐small cell lung cancer cells. Int J Biol Sci. 2022;18(5):2060‐2074. doi:10.7150/ijbs.66630.
      Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7‐33. doi:10.3322/caac.21708.
      Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):1 30 1‐1 30 33. doi:10.1002/cpbi.5.
      Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype‐gene relationships. Nucleic Acids Res. 2019;47(D1):D1038‐D1043. doi:10.1093/nar/gky1151.
      Wang H, Zhang L. Risk of COVID‐19 for patients with cancer. Lancet Oncol. 2020;21(4):e181. doi:10.1016/S1470‐2045(20)30149‐2.
      Fang S, Dong L, Liu L, et al. HERB: a high‐throughput experiment‐ and reference‐guided database of traditional Chinese medicine. Nucleic Acids Res. 2021;49(D1):D1197‐D1206. doi:10.1093/nar/gkaa1063.
      Yao ZJ, Dong J, Che YJ, et al. TargetNet: a web service for predicting potential drug‐target interaction profiling via multi‐target SAR models. J Comput Aided Mol des. 2016;30(5):413‐424. doi:10.1007/s10822‐016‐9915‐2.
      Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(Web Server issue):W32‐W38. doi:10.1093/nar/gku293.
      Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36(Database issue):D684‐D688. doi:10.1093/nar/gkm795.
      Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein‐protein networks, and functional characterization of user‐uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605‐D612. doi:10.1093/nar/gkaa1074.
      F2 gene. 2024. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=F2.
      Kousathanas A, Pairo‐Castineira E, Rawlik K, et al. Whole‐genome sequencing reveals host factors underlying critical COVID‐19. Nature. 2022;607(7917):97‐103. doi:10.1038/s41586‐022‐04576‐6.
      Parks WC, Wilson CL, López‐Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4(8):617‐629. doi:10.1038/nri1418.
      Kouhpayeh HR, Tabasi F, Dehvari M, et al. Association between angiotensinogen (AGT), angiotensin‐converting enzyme (ACE) and angiotensin‐II receptor 1 (AGTR1) polymorphisms and COVID‐19 infection in the southeast of Iran: a preliminary case‐control study. Translational Medicine Communications. 2021;6(1):26. doi:10.1186/s41231‐021‐00106‐0.
      Pathria G, Scott DA, Feng Y, et al. Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. Embo J. 2018;37(20):99735. doi:10.15252/embj.201899735.
      Jin L, Chun J, Pan C, et al. Phosphorylation‐mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36(27):3797‐3806. doi:10.1038/onc.2017.6.
      AGTR1 gene. 2024. Available from https://www.genecards.org/cgi-bin/carddisp.pl?gene=AGTR1.
      Ziegler SF, Bird TA, Schneringer JA, Schooley KA, Baum PR. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene. 1993;8(3):663‐670.
      Hughes DP, Marron MB, Brindle NPJ. The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor‐kappaB inhibitor ABIN‐2. Circ Res. 2003;92(6):630‐636. doi:10.1161/01.RES.0000063422.38690.DC.
      Luo Z, Dong J, Wu J. Impact of icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol. 2022;108:108861. doi:10.1016/j.intimp.2022.108861.
      The Lancet. Understanding long COVID: a modern medical challenge. Lancet. 2021;398(10302):725. doi:10.1016/S0140‐6736(21)01900‐0.
    • Grant Information:
      Innovative research team of high-level local universities in Shanghai-Clinical and basic research on the prevention and treatment of some inflammatory diseases by integrative medicine; Shanghai University; Huashan Hospital
    • Contributed Indexing:
      Keywords: COVID‐19; TCGA; icariside II; molecular docking; network pharmacology; non‐small cell lung cancer; prognosis
    • Accession Number:
      0 (Flavonoids)
      113558-15-9 (baohuoside I)
    • Publication Date:
      Date Created: 20240705 Date Completed: 20240705 Latest Revision: 20240705
    • Publication Date:
      20240705
    • Accession Number:
      10.1002/jgm.3710
    • Accession Number:
      38967229